Kursleitung: Donald Rubin (Harvard University, USA)
Sommersemester 2004, Workshop, Kurslänge: 6.25 Stunden, Sprache: Englisch, Thema: Analysis of causal effects
This course will present the Rubin Causal Model perspective on understanding and teaching statistical inference for causal effects through potential outcomes. There are three parts to the course. The first part establishes the primitives that form the foundation. The second part presents inference based solely on the assignment mechanism; this perspective generalizes Fisher's (1925) and Neyman's (1923) randomization-based methods, and emphasizes the central role of the propensity score (Rosenbaum and Rubin, 1983). The third part presents inference based on predictive models for the distribution of the missing potential outcomes, formally, Bayesian posterior predictive inference (Rubin, 1978). In practice, the predictive approach is ideal for creating statistical procedures, whereas the assignment-based approach of Fisher is ideal for traditional confirmatory inference, and the assignment-based approach of Neyman is ideal for evaluating procedures. For best practice, being facile with all three approaches is important. There is essentially no prerequisite knowledge for this course, as the material is based on an introductory course taught at Harvard University and designed for students with very little quantitative background. The material is, however, conceptually demanding. Examples are presented from a variety of fields, including medicine, education, economics and other branches of social science.
Course outline:Um die Videos anzuschauen, benötigen Sie den , den Sie hier herunterladen können. Die Videos werden bereitgestellt über die
Digitale Bibliothek Thüringen (dbt). Die grün verlinkten Videos und Materialien sind kostenfrei abrufbar. Klicken Sie auf den grünen Link, um das Video zu sehen oder die Datei herunterzuladen! Um alle Materialien und Videos abrufen zu können, müssen Sie sich einloggen.