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1 INTRODUCTION 2

1 Introduction

2 Latent Variables in Classical Test Theory

2.1 The Kind of Random Experiments Considered

In classical test theory, we consider the following kind of empirical phenomenon:

(a) Sample a person u from a set ΩU of persons, and

(b) observe the behavior o of the person u, i.e., observe an element o of the set

ΩO of possible observations.

The set ΩO of possible observations is itself a set product ΩO = ΩO1× . . .×ΩOm of

m sets of possible observations. If we just consider two real-valued measurements

(e.g., of cortisol in saliva, two scores indicating depression, two scores indicating

anxiety, two scores indicating neuroticism, etc.), then ΩO =ΩO1×ΩO2 =R×R , and

the observation o is a pair of two real numbers, i.e., o = (a,b), where a,b ∈R .

2.2 The Mathematical Representation of the Random Experiment

The kind of empirical phenomenon described by (a) and (b) is called a random

experiment. The set of possible outcomes of such a random experiment is Ω [see

Eq. (2) in Table 1]. Its elements are all possible outcomes ω= (u,o) = (u,o1, . . . ,om ).

On this set Ω we choose an appropriate set of events, a σ-algebra A of subsets of

Ω, and assume that there is a (usually unknown) probability measure P on A . The

triple (Ω,A,P ), which is called a probability space, is the mathematical representa-

tion — and describes the mathematical structure including the probabilities of all

events — of the random experiment considered.

2.3 The Random Variables

A random variable on (Ω,A,P ), say Y , is a mapping on the domain Ω with values in

a set, say Ω ′, which is denoted by Y : Ω→Ω ′. The person variable U : Ω→ ΩU is a

projection mapping that maps each possible outcome ω ∈Ω into the set ΩU . That

is, if the random experiment is actually conducted and the person u is sampled,

then a value U (ω) of the person variable U is u. In contrast, the test score vari-

ables Y1, . . . ,Ym map each possible outcome ω ∈Ω into the set R of real numbers.

We assume that these random variables are nonnegative or have finite expectations.

Under this assumption, the U -conditional expectation E (Yi |U ) — synonymously

called the regression of Yi on U — exists for each i = 1, . . . m. These regressions are

random variables on (Ω,A,P ) too, and their values are

E (Yi |U )(ω) = E (Yi |U=u), if U (ω) = u. (1)

In other words, the values of a U -conditional expectation E (Yi |U ) are the (U=u)-

conditional expectations E (Yi |U=u).

So far, we only described the random experiment considered and its mathemati-

cal representation (Ω,A,P ), the probability space, as well as some random variables

on this space. In a sense, the probability space (Ω,A,P ) and the random variables

U , Yi , and E (Yi |U ), i = 1, . . . ,m, mentioned above are the primitives, on which the

basic concepts of classical test theory can be introduced.
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Table 1. Basic concepts of CTT

Primitives

The set of possible outcomes of the random experiment Ω= ΩU ×ΩO (2)

Manifest random variables Yi : Ω→R (3)

Person variable U : Ω→ΩU (4)

Theoretical variables of CTT

True score variables τi := E(Yi |U ) (5)

Measurement error variables εi := Yi −τi (6)

Note ???

2.4 True Score and Measurement Error Variables

The two basic concepts of CTT, true-score and measurement error variables are de-

fined by Equations (5) and (6) (see Table 1). In Table 2 we present some properties

that are implied by the definitions of true-score and measurement error variables in

Equations (5) and (6). These properties are always true provided that the expecta-

tions E (Yi ) and the variances Var (Yi ), i = 1, . . . ,m, are finite.

In Figure 1 some of these properties are represented in a path diagram. The most

important ones are:

(a) Each manifest variable Yi has its own true-score variable τi and its own mea-

surement error variable εi .

(b) True-score variables may correlate with each other.

(c) Measurement error variables may correlate with each other.

(d) True-score variables on one side and measurement error variables on the

other side are uncorrelated.

To emphasize, if we assume that the expectations and variances of the Yi are finite,

then these properties cannot be wrong in any empirical application. They are not

assumptions. Instead, they are logical implications of the definitions of true-score

and measurement error variables. They are always true, just in the same way as it

is always true that a bachelor is unmarried. No empirical study can falsify this fact;

it may only reveal that some alleged bachelors are actually no bachelors. Similarly,

no empirical study can falsify that true-score and measurement error variables are

uncorrelated. It may only show that an alleged pair of true-score and measurement

error variables is actually not a pair true-score and measurement error variables.

2.5 Models of CTT

Introducing models of CTT, we assume that the true-score variables τi are ‘identi-

cal’ in one of the meanings specified by Equations (17) to (19) in Table 3. In all three

models, the common latent variable, τ, is defined by τ := τ1. Of course, in the mod-

els of τ-equivalent and τ-congeneric variables, this definition is arbitrary to some

degree. For example, in the model of τ-equivalent variables, defining τ∗ := α+τ1,
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Table 2. Properties of true-score and measurement error variables

Yi = τi + εi (7)

Var (Yi ) = Var (τi ) + Var (εi ) (8)

Cov (τi ,ε j ) = 0 (9)

E(εi ) = 0 (10)

E(εi |U ) = 0 (11)

E [εi | f (U )] = 0, for all mappings f (U ) of U . (12)

Note . All properties in this table are implied by the definition of true-score and measure-

ment error variables. They are always true if the expectations E(Yi ) and the variances

Var (Yi ) exist.

α ∈R , would do as well. Hence, under essential τ-equivalence, τ is uniquely defined

up to translations. In this case we say that τ has a difference scale. Similarly, under

τ-congenericity, choosing any linear function τ∗ :=α+β·τ1 , α,β ∈R , β> 0, would do

as well. This shows that, under τ-congenericity, τ is uniquely defined up to positive

linear transformations. In this case we say that τ has an interval scale. Note that in

all three models, the common latent variable τ is a (deterministic) function of each

of the true-score variables. Therefore, it is also a function of the person variable U ,

and this means that each of its values characterize a person.

Using εi = Yi −τi , Equation (17) implies

Yi = τi +εi = τ+εi , for all i = 1, . . . ,m, (13)

Equation (18) implies

Yi = τi +εi = λi0 +τ+εi , for all i = 1, . . . ,m, (14)

and Equation (19) implies

Yi = τi +εi = λi0 +λi1 ·τ+εi , for all i = 1, . . . ,m. (15)

Furthermore, assuming conditional mean independence [Eq. (20)] implies uncorre-

lated measurement errors, i.e.,

Cov (εi ,ε j ) = 0, i 6= j , for all i , j = 1, . . . ,m. (16)

Typical models of CTT consist of combining one of the equivalence assumptions

with the conditional mean assumption, and in some models we additionally assume

equal error variances [see Eq. (21)]. For example, the most restrictive model, the

model of parallel variables, consists of Equations (17), (20), and (21). The model of

essentially τ-equivalent variables consists of Equations (18) and (20), and the least

restrictive model, the model of congeneric variables, is defined by Equations (19)

and (20). Note that, in empirical applications, all these assumptions can be wrong.

However, in principle, and in contrast to the properties listed in Table 2, they are also

empirically testable, because they imply a certain structure of the expectations, vari-

ances and covariances of the observables Yi in the total population, but also in and



2 LATENT VARIABLES IN CLASSICAL TEST THEORY 5

Table 3. Assumptions defining various CTT models

Equivalence assumptions

For τ := τ1 and λi0,λi1 ∈R :

τi = τ, for all i = 1,. . . ,m, (τ-equivalence) (17)

τi = λi0 +τ, for all i = 1,. . . ,m, (essential τ-equivalence) (18)

τi = λi0 +λi1 ·τ, for all i = 1,. . . ,m, (τ-congenericity). (19)

Conditional mean independence

E(Yi |U ,Y1, . . . ,Yi−1 , Yi+1 , . . . ,Ym ) = E(Yi |U ). (20)

Equal variances of measurement error variables

Var (εi ) = Var (ε j ). (21)

Note . These equations are assumed to hold for all i , j = 1,. . . ,m. A model of CTT consists

of one of the equivalence assumptions and conditional mean independence. Addition-

ally assuming equal error variances is optional.
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Figure 1. True score and error variables for three manifest variables Y1,Y2, and Y3.
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Figure 2. The model of congeneric variables for three manifest variables Y1,Y2, and Y3.

between subpopulations.1 For more details see ? (?) or ? (?). All these implications

can easily be tested in structural equation modeling.

2.6 Limitations of CTT

As shown above, the CTT concept of a trait (the latent variable τ) has a mathemat-

ical structure that allows to derive its properties (see, e.g., Table 2) and that guides,

but also limits its interpretation. As mentioned before, in all models of CTT, the

common latent variable τ is a (deterministic) function of each of the true-score vari-

ables. Therefore, it is also a function of the person variable U , and this means that

each of its values characterize a person.

The Person-in-a-Situation

The construction of the latent variable τ in classical test theory as outlined above

has been questioned arguing that a person can never be assessed in a situational

vacuum (cf. Steyer, Ferring, & Schmitt, 1992, p. 96). In other words, at the time of

measurement, we do not condition on a person u, but on a “person-in-a-situation”

(Anastasi, 1983).

This argument challenges the substantive interpretation of the person variable

U and the interpretation of the latent variable τ even if we consider only one single

occasion of measurement. If the argument is correct, then a value u of U in CTT

is not a person, but a person-in-the-situation in which the measurement is made,

i.e., u = (u0, s) and U = (U0,S), where U0 represents the person variable and S the

situation variable pertaining to the occasion of measurement considered. Hence,

instead of defining τi by Equation (5), we should rather define

τi := E (Yi |U0,S), (22)

where S represents the situation variable with values s1, s2, . . . , each representing a

situation in which a person could be, at the occasion of measurement considered.

According to this definition, τi is the conditional expectation of the observable Yi

given the person variable U0 and the situation variable S. Hence, τi is a random

variable with values E (Yi |U0=u0,S=s), the conditional expectation given person u0

and situation s.

1If we use the term ‘total population’ we refer to the random experiment described in section 2.1,

in which we sample a person from ΩU . In contrast, the term ‘subpopulation’ refers the same random

experiment except for sampling from a subset of ΩU , such as the subset of male persons in ΩU or the

subset of female persons in ΩU .
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Consequently, the latent variable τ in the model ofτ-congeneric variables, which

is an (arbitrarily fixed deterministic) positive linear function of each τi , does not

represent a property of a person, i.e., a trait, instead it represents a property of a

person-in-a-situation, i.e., a state that is affected by the person and by the situation

in which the measurement is made, as well as by the interaction between person

and situation.

The methodological implication is that the latent variable τ in a CTT model con-

sists of a trait component and a situational/interactional component. Furthermore,

in a cross-sectional design, it is neither possible to disentangle τ itself nor its vari-

ance into these two components. In other words, in a cross-sectional design there is

no way to determine that part of Var (τ) which is due to situational and/or interac-

tional fluctuations and that part which is due to the trait to be measured.2

The Person at Time t

Anastasi’s critique of the CTT concept of a trait that motivated the early versions of

LST theory (see, e.g., Steyer et al., 1992) has to be complemented if several occasions

of measurement are considered. If we measure a person at two occasions of mea-

surement, then we measure a person u0 in situation s1 at occasion 1. However, what

about occasion 2? Do we actually measure the same person u0 in situation s2 at

time 2? What about the experiences of the person in between time 1 and 2? Is it not

true that the complete past of the process considered in a longitudinal study makes

up the person at time t? This past with respect to time 2 does not only include the

experiences in between times 1 and 2 but also the values of the manifest variables

assessed at time 1 and the situations that realized at time 1. If I agree to an item

saying that I am depressed at time 1 then this can have an effect on my depression

at time 2. Similarly, the situation that I did not pass an important examination at or

briefly before time 1 may determine my depression also at time 2. In other words,

which person I am at time 2 depends on the complete past with all experiences I

made, all situations that realized at previous times, and all manifest variables scores

assessed in the past. Hence, we should not only distinguish between variable states

and invariant traits. Instead traits should be considered changeable and even the

concept of a person should be dynamic reflecting both invariance and change of

the person considered. Simply speaking, we should distinguish between John Smith

at time 1 and the “same” John Smith at time 2. In a sense, John is the same and yet

a different person at time 2, and this should be reflected in a theory of states and

traits.

3 Construction of Latent Variables in LST Theory

3.1 The Kind of Random Experiments and Their Mathematical Rep-

resentation

In latent state-trait (LST) theory, we consider the following kind of empirical phe-

nomenon:

(a) A person u0 is sampled from a set ΩU0 of persons.

2Similarly, in CCT we cannot disentangle measurement error and true score variance with a single

measurement Y . This is why we need several measures Yi in order to identify the variances of τ and εi ,

so that we know which part of Var (Yi ) = Var (τ) +Var (εi ) is due to τ and εi , respectively.
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(b) The person u0 will make experiences e1 before assessing the manifest vari-

ables at time 1.

(c) The person u0 will be in a situation s1 at the time of assessing the manifest

variables at time 1.

(d) Behavior o1 is observed.

(e) Items (b) to (d) are repeated for times t = 2, . . . ,n and for these times of mea-

surement, t replaces the index 1 above.

The observation ot is an element of the set ΩOt of possible observations at time

t . This set is a set product ΩOt =ΩO1t × . . .×ΩOmt of m sets of possible observations

at time t . For example, if we consider just two real-valued observations — such as

the score of the person on two depression scales, then ΩOt = ΩO1t ×ΩO2t = R×R ,

and the observation ot is a pair of two real numbers, i.e., ot = (a,b), where a,b ∈R .

The kind of empirical phenomenon described by (a) to (e) is a random experi-

ment with the set Ω of possible outcomes specified in Equation (23) of Table 4. If,

for simplicity, we just consider n = 2 times of assessment, then the elements of Ω are

tuples such as

ω = (u0, e1, s1,o1, e2, s2,o2).

We choose an appropriate set of events, a σ-algebra A of subsets of Ω. Further-

more, we assume that there is a (usually unknown) probability measure P on A . The

probability space (Ω,A,P ) is the mathematical representation — and describes the

mathematical structure — of the random experiment considered.

3.2 The Primitives of LST Theory

The Person at Time t and the Person Variables Ut

Consider the projection mapping U1 : Ω→ΩU0×ΩE1 [see Eq. (24)], which maps each

possible outcome ω ∈Ω into the set ΩU0×ΩE1 . That is, if the random experiment is

actually conducted and the person u0 is sampled, making the experiences e1 be-

fore time 1 of assessment, then a value of U1 is u1 = U1(ω) = (u0,e1), and this pair

(u0,e1) represents the person at time 1. It differs from u0, the person at the time it

is sampled, by the experiences e1 made between sampling and assessment at t = 1.

The actual experiences made could have been different, and this is why e1 is just

one element of a set ΩE1 of possible experiences than can be made before this time

point.

Similarly, for t = 2, consider the projection mapping U2 [see Eq. (25)], the person

variable at time 2, and S2 [see Eq. (26)], the situation variables at time 2. The person

variable U2 is again a projection, mapping each possible outcome ω ∈Ω onto the

set ΩU0×ΩE1×ΩS1×ΩO1×ΩE2 . If the random experiment is actually conducted and

the person u0 is sampled making the experiences e1, being in situation s1 at time 1,

yielding observation o1, and making the experiences e2 before assessment at time 2,

then a value U2(ω) of the person variable U2 is u2 = (u0,e1, s1,o1,e2), and this quintu-

ple represents the person at time 2. Comparing u1 = (u0,e1) to u2 = (u0,e1, s1,o1,e2)

shows how it is possible to refer to same person (u0,e1) and still have a dynamic con-

cept of a person. The person at time 2 (u2) shares (u0,e1) with u1 but differs from

u1 by (s1,o1,e2), i.e., it differs from u1 the situation s1 that actually realizes at time

1, the observation o1 made time 1 and the experiences e2 made between time 1 and

time 2 of assessment. Note that (Ω,A,P ) is assumed to be — and it always can be —

constructed such that the person variables Ut are (nonnumerical) random variables.



3 CONSTRUCTION OF LATENT VARIABLES IN LST THEORY 9

Table 4. Basic concepts of LST theory

The set of possible outcomes of the random experiment

Ω = ΩU0
×ΩE1

×ΩS1
×ΩO1

× . . .×ΩEt
×ΩSt

×ΩOt
× . . .×ΩEn

×ΩSn
×ΩOn

(23)

Primitives of LST theory

Person variable at time t = 1 U1 : Ω→ΩU0
×ΩE1

(24)

Person variable at times t > 1 Ut : Ω→ΩU0
×ΩE1

×ΩS1
×ΩO1

× . . .×ΩEt
(25)

Situation variable at time t St : Ω→ΩSt
(26)

Manifest random variables Yi t : Ω→R (27)

(Ut ,St )-Conditional expectations E(Yi t |Ut ,St ): Ω→R (28)

Ut -Conditional expectations E(Yi t |Ut ): Ω→R (29)

Theoretical variables of LST theory

Latent state variables τi t := E(Yi t |Ut ,St ) (30)

Measurement error variables εi t := Yi t −τi t (31)

Latent trait variables ξi t := E(Yi t |Ut ) (32)

Latent state residuals ζi t := τi t −ξi t (33)

Important coefficients of LST theory

Reliability Rel(Yi t ) := Var (τi t )/Var (Yi t ) (34)

Consistency Con(Yi t ) := Var (ξi t )/Var (Yi t ) (35)

Occasion specificity Spe(Yi t ) := Var (ζi t )/Var (Yi t ) (36)

Note that the definition of the person variables Ut described above has been

changed in the new version of LST theory presented in this paper, and this has im-

plications, in particular for the definition of the latent trait variables (see Table 4).

Now the concept of a person variable Ut allows for the persons to change between

different times of measurement. In contrast, although persons could be in different

situations at different occasions of measurement, in previous versions of the theory

we only considered a static person variable U .

The Situations at Time t and the Situation Variables St

As mentioned before, whenever a person is assessed (measured, tested, observed,

rated), he or she is a specific situation. There is no situational vacuum. By situation

we mean everything that might be relevant for the result of the assessment. This

includes psychological situations (such as being in a specific mood state), physical

situations (such as being exhausted), social situations (such as being in a group or

being alone), biological situations (such as being hungry or full), etc., and the com-

bination of all such situations. Whatever the situation is, we can consider it to be

an element of set of situations ΩSt , one of which realizes at the time t . Therefore,

we consider the projection mappings St that map the possible outcome ω ∈Ω of the
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Figure 3. Latent states, latent traits, measurement errors, and latent state-trait residuals.

random experiment onto the set ΩSt . Such a situation variable St is again a (nonnu-

merical) random variable, just like the person variables Ut discussed above.

The Manifest Variables Yi t and Their Conditional Expectations

The (manifest) random variables Yi t have two indices referring to measurement i

at time t . According to the specific scoring rule for measurement i (at time t), each

of these manifest variables Yi t maps each possible outcome ω ∈Ω into the set R of

real numbers. Assuming that the Yi t are nonnegative or have finite expectations, we

can consider their conditional expectations, which again are random variables on

(Ω,A,P ).

Using the person variables Ut and the situation variables St , we consider the

(Ut ,St )-conditional expectations of Yi t with values

E (Yi t |Ut ,St )(ω) = E (Yi t |Ut=ut ,St=st ), if (Ut ,St )(ω) = (ut , st ). (37)

Hence, the values of such a (Ut ,St )-conditional expectation E (Yi t |Ut ,St ) are the

(Ut=ut ,St=st )-conditional expectations E (Yi t | Ut=ut ,St=st ). Similarly, we also

consider the Ut -conditional expectations of Yi t with values

E (Yi t |Ut )(ω) = E (Yi t |Ut=ut ), if Ut (ω) = ut . (38)

This shows that the values of a Ut -conditional expectation E (Yi t |Ut ) are the (Ut=ut )-

conditional expectations E (Yi t |Ut=ut ). The conditional expectations specified in

Equations (37) and (38) will be used in the next section to define the basic concepts

of LST theory.

The probability space (Ω,A,P ) and the random variables Ut , St , Yi t , E (Yi t |Ut ,St ),

and E (Yi t |Ut ), i = 1, . . . ,m, t = 1, . . . ,n, are the primitives used to define the basic

concepts of LST theory.

3.3 Basic Concepts of LST Theory

In the next part of Table 4 we define the latent state variables τi t , the measurement

error variables εi t , the latent trait variables ξi t , and the latent state residual of ζi t

[see Eqs. (30) to (33)]. These are the four basic concepts of LST theory. Note that

ζi t = τi t −ξi t = τi t −E (Yi t |Ut ) = τi t −E (τi t |Ut ), (39)
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because

E (τi t |Ut ) = E
[

E (Yi t |Ut ,St )
∣

∣Ut

]

= E (Yi t |Ut ) = ξi t . (40)

Equation (39) shows that ζi t is a residual of τi t with respect to the regressor Ut . (See

chapter 10 of Steyer, Nagel, Partchev, & Mayer, in press, for the properties of residu-

als with respect to a conditional expectation.)

LST Coefficients

The last part of Table 4 displays the most important coefficients of LST theory. The

reliability coefficient Rel(Yi t ) quantifies how well, on average, the manifest vari-

able Yi t estimates the latent state variable τi t . Similarly, the consistency coefficient

Con(Yi t ) quantifies how well, on average, the manifest variable Yi t estimates the la-

tent trait variable ξi t . In contrast, the occasion specificity coefficient Spe(Yi t ) quan-

tifies which proportion of the variance of the manifest variable Yi t is determined

by the latent state residual ζi t that represents situation effects and the effects of the

interaction between person and situation on Yi t .

Implications of the Definitions

The fact that the variables ζi t are residuals with respect to a conditional expecta-

tion implies some of their properties displayed in Table 5. To emphasize, these and

the other properties displayed in this table are solely implied by the definitions of

the variables involved. All these properties are always true provided that the expec-

tations E (Yi t ) and the variances Var (Yi t ), i = 1, . . . ,m, t = 1, . . . ,n, are finite. They

can be derived from the definitions of the four LST-theoretical variables displayed

in Table 4.

In Figure 1 some of these properties are represented in a path diagram. The most

important ones are:

(a) Each manifest variable Yi t has its own latent trait variable ξi t , its own latent

state variable τi t , its own measurement error variable εi t , and its own latent

state residual ζi t .

(b) Latent trait variable variables may correlate with each other.

(c) Latent state variable variables may correlate with each other and with the

latent trait variables.

(d) Measurement error variables may correlate with each other.

Furthermore, if s ≤ t , then

(e) Measurement error variables εi t on one side and latent state residuals ζ j s on

the other side are uncorrelated [see Table 5, Eq. (49)].

(f) Measurement error variables εi t on one side and latent state variables τ j s on

the other side are uncorrelated [see Table 5, Eq. (50)].

(g) Measurement error variables εi t on one side and latent trait variables ξ j s on

the other side are uncorrelated [see Table 5, Eq. (51)].

(h) Latent state-residuals on one side and latent trait variables on the other side

are uncorrelated [see Table 5, Eq. (52)].

Finally,
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Table 5. Some properties of the basic concepts of LST theory

Decomposition of variables

τi t = ξi t + ζi t (41)

Yi t = τi t + εi t (42)

= ξi t + ζi t + εi t (43)

Decomposition of variances

Var (τi t ) = Var (ξi t ) + Var (ζi t ) (44)

Var (Yi t ) = Var (τi t ) + Var (εi t ) (45)

= Var (ξi t ) + Var (ζi t ) + Var (εi t ) (46)

Other properties

E(εi t ) = 0 (47)

E(ζi t ) = 0 (48)

Cov (εi t ,ζ j s ) = 0, s ≤ t (49)

Cov (εi t ,τj s ) = 0, s ≤ t (50)

Cov (εi t ,ξ j s ) = 0, s ≤ t (51)

Cov (ζi t ,ξ j s ) = 0, s ≤ t (52)

Cov (ζi t ,ζ j s ) = 0, s 6= t (53)

E(εi t |Us ,St ) = 0, s ≤ t (54)

E(εi t |Us ) = 0, s ≤ t (55)

E(ζi t |Us ) = 0, s ≤ t (56)

E(εi t |ξs ,τi s ) = 0, s ≤ t (57)

E(ζi t | ξs ) = 0, s ≤ t (58)

Rel(Yi t ) = Con(Yi t ) + Spe(Yi t ). (59)

Note . All properties in this table hold for all i , j ∈ I := {1, . . . ,m}, s, t ∈ T := {1, . . . ,n},

provided that the expectations E(Yi t ) and the variances Var (Yi t ) are finite. All these

properties (and many others) follow from the definition of latent trait, latent state, mea-

surement error variables, and latent state residuals.
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(i) Latent state-residuals pertaining to different time points are uncorrelated

[see Table 5, Eq. (53)].

These propositions about the covariances follow from the definitions of the latent

state and latent trait variables [see Table 4, Eqs. (30) to (33)] using the fact that resid-

uals are uncorrelated with functions of their regressors (for more details, see Steyer

et al., in press, ch. 10).

To emphasize, this equation and all properties displayed in Table 5 cannot be

wrong in any empirical application. These properties are always true, in the same

sense that it is always true that a bachelor is unmarried. (Of course, you may find

that a purported bachelor is married. However, then we can conclude that he ac-

tually is not a bachelor. We can not conclude that a bachelor can be married.) In

contrast, the assumptions defining models of LST theory, which will be introduced

in the following section, can be wrong in empirical applications.

3.4 Models of LST Theory

Models of LST theory are defined by assumptions about the LST-theoretical con-

cepts. Different assumptions define different models, only some of which will be

discussed in this paper in more detail.

Multistate Models

For the latent state variables we define, for all t = 1, . . . ,n,

τt := τ1t (60)

and make one of the equivalence assumptions displayed in Equations (61) to (63)

(see Table 6). Each of these assumptions is a different way of saying that within

each time point t , the manifest variables Yi t measure the same latent state variable,

denoted τt . Therefore, if one of these three assumptions holds, then τt is also called

a common latent state variable.

Of course, defining τt := τ1t in the model of essentially τt -equivalent variables is

arbitrary, because τ∗
t := α+τ1t , for any real number α would do as well. Hence, the

common latent state variable τt is uniquely defined only up to translations, i.e., if

τt and τ∗
t are two versions of the common latent state variable, then there is a real

number α such that τt = τ∗
t +α.

Similarly, in the model of τt -congeneric variables, the common latent state vari-

able τt could also be defined by τt :=α+β ·τ1t , for any pair of real numbers α and β.

Nevertheless, in this model, the common latent state variable τt is uniquely defined

up to linear transformations.

Next, we add the assumption of conditional mean independence: the expecta-

tions of the manifest variables Yi t only dependent on the person variable Ut and the

situation variable St , but not additionally on person variables or situation variables

pertaining to other time points nor on other manifest variables Y j s , ( j s) 6= (i t).

Finally, if scale invariance over time is desired for the model of essentially τt -

equivalent variables, we may additionally assume

λi t0 = λi s0 (65)

for essential τt -equivalence, and

λi t0 = λi s0 and λi t1 =λi s1 (66)
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Table 6. Assumptions defining various kinds of multistate models

Equivalence assumptions

For τt := τ1t and λi t0 ,λi t1 ∈R :

τi t = τt (τt -equivalence) (61)

τi t = λi t0 + τt , where λ1t0 = 0 (essential τt -equivalence) (62)

τi t = λi t0 + λi t1 ·τt , where λ1t0 = 0 and λ1t1 = 1, (τt -congenericity) (63)

Conditional mean independence

E
[

Yi t

∣

∣U1, . . . ,Un ,S1, . . . ,Sn ,
(

Y j s , ( j , s) ∈ I ×T \ {(i , t)}
) ]

= E(Yi t |Ut ,St ). (64)

Note . These equations are assumed to hold for all i , j ∈ I := {1, . . . ,m}, s, t ∈T := {1, . . . ,n}.

A multistate model consists of one of the equivalence assumptions and conditional

mean independence.

for τt -congenericity), all equations for all i = 1, . . . ,m, and s, t = 1, . . . ,n.

The upper path diagram of Figure 4 shows such a multistate model with τt -

congenericity. In the other parts of this figure we already utilize some of the implica-

tions of the assumptions of a multistate model, which are discussed in the following

section.

Implications

Each of the assumptions (61) to (63) in Table 6 has a number of implications. Some

of these implications concern the latent trait variables ξi t within each of the time

points t . For all multistate models we defined τt := τ1t (see Table 6). This implies,

for all t = 1, . . . ,n,
ξ1t = E (Y1t |Ut ) [see Eq. (32)]

= E (τ1t |Ut ) [see Eq. (40)]

= E (τt |Ut ) [τt := τ1t ].

(67)

Now, for all t = 1, . . . ,n, we also define

ξt := ξ1t , (68)

the common latent trait variable within time point t .

Assuming τt -equivalence within each time point [see Eq. (61) in Table 6] implies,

for all i = 1, . . . ,m and t = 1, . . . ,n,

ξi t = E (Yi t |Ut ) = E (τi t |Ut ) [see Eq. (40)]

= E (τt |Ut ) [see Eq. (61)]

= ξt [see Eqs. (67), (68)].

(69)

Hence, assuming τt -equivalence implies ξt -equivalence within each time point [see

Eq. (71) in Table 7].
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Figure 4. Three equivalent path diagrams of a multistate model. In such a model the

variances Var (ξt ) and Var (ζt ), t = 1,2, are not identified.

Similarly, assuming essential τt -equivalence [Eq. (62) in Table 6] implies, for all

i = 1, . . . ,m and t = 1, . . . ,n,

ξi t = E (Yi t |Ut ) = E (τi t |Ut ) [see Eq. (40)]

= E (λi t0 +τt |Ut ) [see Eq. (62)]

= λi t0 +E (τt |Ut )

= λi t0 +ξt [see Eqs. (67), (68)].

(70)

Hence, within each time t , the Yi t -specific latent traits ξi t differ only with respect to

the additive constant λi t0 . In other words, assuming essential τt -equivalence within

each time point [see Eq. (62) in Table 6] implies essential ξt -equivalence within each

time point [see Eq. (72) in Table 7]. In this sense, the latent trait variable ξt is com-

mon to all variables Yi t within time point t .

Analogously, it is easily seen: Assuming τt -congenericity within time points [see

Eq. (63)] implies ξt -congenericity within time points [see Equation (73) in Table 7].

The lower two path diagrams in Figure 4 show the congeneric version of a multistate

model, and these path diagrams include the common latent trait variables ξt . Note,

however, that in such a model the variances Var (ξt ) and Var (ζt ), t = 1,2, are not

identified.

Other implications of the multistate model are related to the latent state residu-

als. If we assume τt -equivalence, then Equation (61) implies

ζi t = τi t − ξi t = τt − ξt . (85)

Similarly, Equation (62) implies

ζi t = τi t − ξi t = λi t0 +τt − (λi t0 +ξt ) = τt − ξt . (86)
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Table 7. Implications of multistate models

Implications of the equivalence assumptions

(61) ⇒ ξi t = ξt ( ξt -equivalence) (71)

(62) ⇒ ξi t = λi t0 + ξt (essential ξt -equivalence) (72)

(63) ⇒ ξi t = λi t0 + λi t1 · ξt ( ξt -congenericity) (73)

[(61) ∨ (62) ∨ (63)] ⇒ τt = ξt + ζt (74)

Var (τt ) = Var (ξt ) + Var (ζt ) (75)

(61) ∨ (62) ⇒ ζi t = ζt ( ζt -equivalence) (76)

Var (Yi t ) = Var (τt ) + Var (εi t ) (77)

(63) ⇒ ζi t = λi t1 · ζt ( ζt -congenericity) (78)

Var (Yi t ) = λ2
i t1 ·Var (τt ) + Var (εi t ). (79)

Implications of conditional mean independence on covariances

(64) ⇒ Cov (εi t ,ε j s ) = 0, (i , t) 6= ( j , s) (80)

[(61) ∨ (62) ∨ (63)] ∧ (64) ⇒ Cov (ζt ,ξs ) = 0 (81)

Cov (εi t ,τs ) = 0 (82)

Cov (εi t ,ξs ) = 0 (83)

Cov (εi t ,ζs ) = 0. (84)

Note . We define τt := τ1t , ξt := E(τt |Ut ), and ζt := τt − ξt . All equations hold for all

i , j = 1,. . . ,m and s, t = 1,. . . ,n.
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Finally, assuming τt -congenericity [see Eq. (63)] implies

ζi t = τi t − ξi t = λi t0 +λi t1 τt − (λi t0 +λi t1 ξt ) = λi t1 · (τt − ξt ). (87)

This means that, in each of these multistate models, we can define

ζt := τt − ξt , (88)

which yields Equation (78) (see Table 7).

The path diagram in the lower left-hand side of Figure 4 visualizes these impli-

cations of the multistate model of τt -congeneric variables for the manifest variables

Yi t , namely,

Yi t = λi t0 + λi t1 ·τt + εi t (89)

and

τt = ξt + ζt . (90)

Hence, in the multistate model, each latent state variable τt has its own latent trait

variable ξt and its own latent state residual ζt . Although each of the three equiv-

alence assumptions implies Var (τt ) = Var (ξt )+Var (ζt ), the variances Var (ξt ) and

Var (ζt ) cannot be separated from their sum, Var (τt ), unless additional assumptions

are introduced, i.e., the variances Var (ξt ) and Var (ζt ) are not identified.

The path diagram in the lower right-hand side of Figure 4 is an alternative visu-

alization of the implications of the multistate model of τt -congeneric variables. This

path diagram results from substituting Equation (90) into Equation (89), i.e.,

Yi t = λi t0 + λi t1 ·τt + εi t

= λi t0 + λi t1 · (ξt + ζt ) + εi t

= λi t0 + λi t1 ·ξt + λi t1 ·ζt + εi t .

(91)

For simplicity, the intercepts λi t0 are not represented in the diagram.

3.5 Multistate-Singletrait Models

The first class of models that allows for the identification of the variances and co-

variances of the latent state variables, the latent trait variables, and the latent state

residuals is the multistate-singletrait model. This model is defined by adding one

of the three assumptions presented in Table 8 to the assumptions defining a multi-

state model. With θ-equivalence [see Table 6, Eq. (92)] we assume that there is no

trait change at all over all n occasions of measurement. The latent trait variable θ is

identical to the time-specific latent trait variables ξt , which themselves are identical

to the Yi t -specific latent trait variables ξi t .

In contrast, with essential θ-equivalence [see Table 6, Eq. (93)] trait change is

possible, but we assume that the amount of change from one time point to another

one is the same for each and every person in the population, i.e., for all persons

that might be sampled in the random experiment considered. In other words, trait

change can perfectly be described by a translation, i.e., by adding a constant that is

identical for all persons in the population.

Finally, with θ-congenericity [see Table 6, Eq. (94)] we also allow for trait change,

but it is assumed that this change can perfectly be described by a linear function
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Table 8. Additional assumptions and implications of multistate-singletrait models

Additional assumptions of the multistate-singletrait model

For θ := ξ1 and λt0,λt1 ∈R :

ξt = θ, (θ-equivalence) (92)

ξt = λt0 + θ ( essential θ-equivalence) (93)

ξt = λt0 + λt1 · θ (θ-congenericity). (94)

Additional implications on variables and their variances

[(61) ∨ (62) ∨ (63)] ∧ (92) ⇒ τt = θ + ζt (95)

Var (τt ) = Var (θ) + Var (ζt ) (96)

[(61) ∨ (62) ∨ (63)] ∧ (93) ⇒ τt = λt0 + θ + ζt (97)

Var (τt ) = Var (θ) + Var (ζt ) (98)

[(61) ∨ (62) ∨ (63)] ∧ (94) ⇒ τt = λt0 + λt1 · θ + ζt (99)

Var (τt ) = λ2
t1 · Var (θ) + Var (ζt ) (100)

Additional implications on covariances

Cov (εi t ,θ) = 0 (101)

Cov (ζt ,θ) = 0. (102)

Note . One of the three equivalence assumptions [Eqs. (92) to (94)] is made additional to

the assumptions defining a multistate model (see Table 6). The variables ξt are defined

by Equation (68). All equations are assumed to hold for all i = 1,. . . ,m and t = 1,. . . ,n.

with the same two coefficients (intercept and slope) for all persons, implying that

the correlation between the latent trait variables ξs and ξt is 1, for all s, t = 1, . . . ,n.

The most important additional implications of the multistate-singletrait model

are also presented in Table 8. Note that these implications are additional to the

implications already following from the multistate model (see Table 7). These addi-

tional implications concern the common latent state variables τt and their variances

[see Eqs. (96), (98), (100)], and the covariances of the common latent trait variable

θ with measurement errors and with common latent state residuals [see Eqs. (101),

(102)].

To emphasize, all implications of the definitions of latent state and trait variables

and of the multistate models displayed in Tables 7 and 5 are still true in the corre-

sponding multistate-singletrait model. For example, if we assume τt -congenericity

[Eq. (63)] and θ-congenericity [Eq. (94)], then the equations

Yi t = τi t + εi t

= (λi t0 + λi t1 ·τt ) + εi t [(63)]

= λi t0 + λi t1 · (λt0 + λt1 · θ + ζt ) + εi t [(99)]

= (λi t0 + λi t1λt0 + λi t1λt1 · θ) + λi t1 · ζt + εi t

= ξi t + ζi t + εi t [(43)]

(103)
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Figure 5. A congeneric multistate-singletrait model for two observations at each of two

occasions of measurement

hold for the manifest variables Yi t . Correspondingly,

Var (Yi t ) = Var (τi t ) + Var (εi t ) [(45)]

= λ2
i t1Var (τt ) + Var (εi t ) [(79)]

= λ2
i t1λ

2
t1Var (θ) + λ2

i t1Var (ζt ) + Var (εi t ) [(100)]

= Var (ξi t ) + Var (ζi t ) + Var (εi t ) [(46)]

(104)

hold for the variances of the Yi t .

To summarize: Two of the multistate-singletrait models allow for trait change.

However, under essential τt -equivalence (the first of these two), trait change is re-

stricted to changes that can be described by adding the same constant to the trait

scores of all persons. Trait change under τt -congenericity allows for changes that

can be described by adding a constant and multiplying by another constant, where

again the two constants are identical for all persons.

3.6 Multistate-Multitrait Models

Multistate-multitrait models allow for more complex kinds of trait change. Table 9

displays the assumptions that are made additionally to the assumptions defining

a multistate model (see Table 6). For simplicity, these additional assumptions are

presented for the case of two traits. The first of these two traits, θ1, is measured at n1

time points, the second one, θ2, at n2 time points. Figure 6 shows the path diagram

of the congeneric version of the model for n1 = n2 = 2 time points.

Note that the latent trait variable θ1 is defined by θ1 := ξ1 (see Table 9). This

means that, in Figure 6, there are no residuals for xi1 and xi2. Remember, ξ1 has

been defined by ξ1 := E (τt |Ut ) [see Eq. (68)]. Tracing back all these definitions yields

θ1 = ξ1 = ξ11. (113)

Hence, in the model represented in Figure 6, the latent trait variable θ1 is defined

such that it is identical to the Y11-specific latent trait variable ξ11. Correspondingly,

in this model,

θ2 = ξ3 = ξ13. (114)

In contrast to the multistate-singletrait model, the multistate-multitrait model

allows for any kind of trait change. Usually, the two latent trait variables θ1 and θ2
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Table 9. Additional assumptions and implications of multistate-doubletrait-

models

For θ1 := ξ1, θ2 := ξn1+1, and λt0,λt1 ∈R :

ξt = θ1, for t = 2,. . . ,n1 (θ1-equivalence) (105)

ξt = θ2, for t = n1 +2,. . . ,n2 (θ2-equivalence) (106)

ξt = λt0 + θ1, for t = 2,. . . ,n1 ( essential θ1-equivalence) (107)

ξt = λt0 + θ2, for t = n1 +2,. . . ,n2 ( essential θ2-equivalence) (108)

ξt = λt0 + λt1 · θ1, for t = 2,. . . ,n1 (θ1-congenericity). (109)

ξt = λt0 + λt1 · θ2, for t = n1 +2,. . . ,n2 (θ2-congenericity). (110)

Additional scale invariance assumptions (optional)

λt0 = λ(n1+t )0, for t = 2,. . . ,n1 (for ess. equivalence) (111)

λt0 = λ(n1+t )0 and λt1 = λ(n1+t )1, for t = 2,. . . ,n1 (for congenericity) (112)

Note . One of the three pairs of equivalence assumptions is made additional to the as-

sumptions defining a multistate model (see Table 6). The variables ξt are defined by

Equation (68).

will correlate, but this correlation does not have to be 1. (However, if the correlation

is 0, then we would have to assume λ21 = λ41 = 1. Otherwise, the model would not

be identified.)

Figure 7 represents a congeneric multistate-multitrait model omitting the time-

specific latent trait variables. In this model, the two latent trait variables θ1 and θ2

are correlated. Figure 8 shows the same kind of model, now with the linear regres-

sion of θ2 on θ1 replacing the covariance between the two variables. Note that the

two models are identical with respect to their implications on the expectations, vari-

ances, and covariances of the manifest variables Yi t .

3.7 Multigroup-Multistate-Multitrait Models

Oftentimes, we are not only interested in describing trait change. For example, psy-

chotherapy should have long-term effects that are not only due to situational fluctu-

ations. In terms of LST theory this means that an intervention should have an effect

on a latent trait variable (see section 1). Multigroup-multistate-multitrait models

presented in this section can be used to estimate and test average and various con-

ditional treatment effects on a latent trait ‘response’ (or outcome) variable. For sim-

plicity, we will only consider a treatment variable X with values 0 and 1 indicating

control (X=0) and treatment (X=1). Furthermore, we restrict our presentation to

the case in which we measure a latent trait variable θ1 before treatment and a la-

tent trait variable, θ2, at one appropriate time after treatment. Figure 9 depicts such

a model for each of two treatment conditions. This model basically consists of a

multistate-multitrait model in each of the two treatment conditions with the only

exception that the conditional mean independence assumption now also includes
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Figure 6. A congeneric multistate-multitrait model for two observations at each of two

occasions of measurement. For didactic reasons, time-specific latent traits are included.
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Figure 7. Two equivalent path diagrams of a congeneric multistate-multitrait model

with correlated traits θ1 and θ2. Time-specific latent trait variables are not represented.
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Figure 8. A congeneric multistate-multitrait model with linear regression of θ2 on θ1

the treatment variable X , i.e., now we assume

E
[

Yi t

∣

∣U1, . . . ,Un ,S1, . . . ,Sn , X ,
(

Y j s , ( j , s) ∈ I ×T \ {(i , t)}
)]

= E (Yi t |Ut ,St ) (115)

instead of Equation (64). This implies that the parameters λi t0 and λi t1 (see Table 6)

of the measurement model for the latent state variables τt are invariant between the

two treatment conditions. Invariance across all treatment conditions also holds for

the parameters λt0 and λt1 (see Table 9) of the measurement model for the latent

variables θt . Substantively speaking, invariance of the measurement models across

treatment conditions is required if we intend to measure the same latent variables,

latent states and latent traits, in both treatment conditions, and measuring the same

latent variables in both treatment conditions is necessary if we want to compare

their expectations and interpret their difference as an effect of the treatment.

Randomized-Experiments

In a randomized experiment, the treatment variable X and all pre-treatment vari-

ables will be independent. (These pre-treatment variables include the manifest vari-

able Y11, Y21, Y12, and Y22, but also the latent state variables τ1 and τ2, the latent

state residuals ζ1 and ζ2, as well as the latent trait variable θ1.) Under independence

of X and all pre-treatment variables the average total treatment effect is identical to

the difference

E (θ2 |X=1) − E (θ2 |X=0), (116)

i.e., to the difference between the conditional expectations of θ2 in the two treat-

ment conditions. This difference is easily estimated and tested in a two-group struc-

tural equation model.
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Figure 9. A congeneric twogroup-multistate-multitrait model.

Aside from the average total treatment effect, we can also estimate and test hy-

potheses about the θ1-conditional-effect function, say g1(θ1), that can be introduced

as follows: Because X is dichotomous with values 0 and 1, there are always real-

valued functions g0 and g1 such that the regression of θ2 on X and θ1 can be written:

E (θ2 |X ,θ1) = g0(θ1) + g1(θ1) ·X . (117)

Hence, for a fixed value of the pre-treatment latent trait variable θ1, we will always

have a linear (parameterization of the) regression of Y on X . However, the intercepts

and slopes of these regressions can be different for different values of θ1. Therefore,

the values of g1(θ1) are the θ1-conditional effects of X on Y .

Now consider the treatment-specific regressions of the latent trait response vari-

able θ2 on the latent trait pre-treatment variable θ1 (a latent covariate). Equation

(117) immediately implies:

E (θ2 |X=0, θ1) = g0(θ1) (118)

and

E (θ2 |X=1, θ1) = g0(θ1) + g1(θ1). (119)

Hence, the effect function is

g1(θ1) = E (θ2 |X=1, θ1) − E (θ2 |X=0, θ1), (120)

the difference between the two treatment-specific regressions of θ2 on θ1. If we as-

sume that these two regressions have a linear parameterization, i.e., if they can be
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written

E (θ2 |X=0, θ1) = β(0)
0 + β(0)

1 · θ1 and E (θ2 |X=0, θ1) = β(1)
0 + β(1)

1 · θ1, (121)

then the effect function can easily be estimated and tested in a two-group structural

equation model, because, in this case,

g1(θ1) = E (θ2 |X=1, θ1) − E (θ2 |X=0, θ1)

= β(1)
0 + β(1)

1 · θ1 −
(

β(0)
0 + β(0)

1 · θ1

)

=
(

β(1)
0 −β(0)

0

)

+
(

β(1)
1 −β(0)

1

)

· θ1

= γ10 + γ11 · θ1.

(122)

Estimating this effect function is of substantive interest whenever we would like to

know how the treatment effect depends on the pre-treatment latent trait. How big is

the treatment effect for persons with a high value and how big is it for persons with

a low value on θ1, the pre-treatment trait variable?

In contrast, the average total effect [see Eq. 116] is only the expectation of these

θ1-conditional effects, i.e., in the randomized experiment,

E [g1(θ1)] = E (θ2 |X=1) − E (θ2 |X=0), (123)

where

E [g1(θ1)] = E (γ10 + γ11 · θ1) = γ10 + γ11 · E (θ1). (124)

Quasi-Experiments

While the answer to these questions is straight-forward in the framework of a ran-

domized experiment, it is more complicated and needs more assumptions in a non-

equivalent control group design. In order to identify average and conditional total

treatment effects, we have to assume unbiasedness of the regressions E X=x(θ2 |θ1)

in both treatment groups (see, ?, ?, for a definition as well as necessary and suf-

ficient conditions of unbiasedness). In informal terms, unbiasedness means that

there are no omitted confounding variables that introduce bias. In a randomized

experiment, unbiasedness of the regressions E (θ2 |X=x, θ1) always holds, whereas

in a quasi-experiment, it does not necessarily hold.

However, under unbiasedness, the effect function g1(θ1) still informs about the

θ1-conditional total treatment effects, and its expectation [see Eq. (124)] is still iden-

tical to the average total treatment effect. Furthermore, we can also consider

E [g1(θ1) |X=x] = E (γ10 + γ11 · θ1 |X=x) = γ10 + γ11 · E (θ1 |X=x), (125)

the (X=x)-conditional total treatment effect. In the non-equivalent control group

design, E [g1(θ1) |X=0] and E [g1(θ1) |X=1] will differ. This means that the average

total treatment effect on the treated, E [g1(θ1) |X=1], will differ from the average to-

tal treatment effect on the nontreated, E [g1(θ1) |X=0]. Whereas E [g1(θ1) |X=1] in-

forms about the average total treatment effect in the population of those subjects

that, under the current assignment regime, choose or are selected into treatment,

E [g1(θ1) |X=0] informs about the average total treatment effect in the population of

those subjects that, under the current assignment regime, do not choose or are not

selected into treatment.
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If the treatment-specific regressions E (θ2 |X=x, θ1) are not unbiased, one can se-

lect additional covariates Z1, . . . , Zq such that unbiasedness holds for the regressions

E (θ2 |X=x, θ1, Z ), where Z = (Z1, . . . , Zq ). In this case, the (θ1, Z )-conditional effect

function is

g1(θ1, Z ) = E (θ2 |X=1, θ1, Z ) − E (θ2 |X=0, θ1, Z ), (126)

and the average total treatment effect is E [g1(θ1, Z )]. Again, we can consider the

(X=x)-conditional total treatment effects E [g1(θ1, Z ) |X=x], x = 0,1. Furthermore,

we may then be interested in (X=x)-conditional total-treatment-effect functions

such as E [g1(θ1, Z )|X=x, θ1] or E [g1(θ1, Z )|X=x, Z1] informing how the (X=x)-con-

ditional total treatment effects depend on θ1 or Z1, respectively.

4 Discussion

In this paper we presented a revision of LST theory, a probabilistic theory of la-

tent states and traits that deals with two fundamental problems of psychological

research. Observations are fallible and they are never made in a situational vacuum.

While the first problem necessitates considering measurement error, the latter re-

quires allowing for situational fluctuations. Compared to the previous version of

LST theory, our revision differs in the concept of a person, and this new concept of

a person has implications on the concepts of latent traits and latent states.

4.1 What is a person?

The concept of a person has been neglected in methodology for a long time. In al-

most all statistical models, a person is just an index. Even, in the previous version

of LST theory, a person was just a value of the person variable U . Although this lead

to using more sophisticated concepts such as the conditional expectations E (Yi t |U )

and E (Yi t |U ,St ), this static concept of a person did not allow for an adequate rep-

resentation of the stochastic processes inevitably involved in longitudinal studies.

In the revised version of LST theory not only traits but also persons themselves can

change over time. A concrete person-at-time-t , denoted ut , is a combination of the

initial person u0 and the complete past of the process, which consists of the past

experiences, past situations in which the person has been assessed, and the obser-

vations made in these assessments. It differs from a concrete person-at-time-t-in-

a-situation-st by the concrete situation st in which the person is assessed at time

t .

4.2 What is a trait?

If we consider manifest numerical random variables (observables) in the kind of

random experiments described in section 3.1, then each such observable Yi t can

be decomposed into the sum of a latent state τi t and a measurement error compo-

nent εi t , and the latent state τi t itself is a latent trait ξi t plus a latent state residual

ζi t . It should be emphasized that the only prerequisite of this decomposition is that

the observable Yi t is nonnegative or has a finite expectation. Hence, the distinction

between latent states, traits, and state residuals is not based on any model, e.g., as

considered in structural equation modeling. Nevertheless, the definitions of these

concepts already imply a number of properties some of which are essential for un-

derstanding their meaning.
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Perhaps, the most obvious implication is that the trait score E (Yi t |Ut =ut ) of a

person-at-time-t is actually a property of ut , the person-at-time-t . Although this

fact may seem trivial, it would not be clear if we would solely rely on introducing

latent states and traits via a structural equation model. Using a structural equation

model with latent variables alone does not define the latent variables involved, and

this conceals their nature and substantive meaning.

A less obvious implication of the definition of a latent trait variable [see Eq. (32)

in Table 4] is that the trait score E (Yi t |Ut =ut ) of a person-at-time-t is the (Ut =ut )-

conditional expectation of the partial conditional expectation E (Yi t |Ut =ut ,St ), i.e.,

E (Yi t |Ut =ut ) = E (τi t |Ut =ut ) = E
[

E (Yi t |Ut =ut ,St )
∣

∣Ut =ut

]

. (127)

In other words, a score of the latent trait variable is an expectation over the person-

at-time-t-conditional distribution of the situations in which the person-at-time-t

might be. Hence, situations are implicitly involved in defining a latent trait. They

determine the latent trait score via the person-at-time-t-specific distribution of the

situations.

4.3 What is a state?

In this revision of LST theory we defined a latent state variable by τi t = E (Yi t |Ut ,St )

and the latent state residual by ζi t = τi t − ξi t . These definitions imply that a latent

state variable is a sum of the latent trait variable and the latent state residual, i.e.,

τi t = ξi t +ζi t , which can also be written

τi t = E (Yi t |Ut ,St )

= E (Yi t |Ut ) + [E (Yi t |Ut ,St ) − E (Yi t |U )]

= E (Yi t |Ut ) + E (Yi t |St ) + [E (Yi t |Ut ,St ) − E (Yi t |Ut ) − E (Yi t |St )]

(128)

This equation shows that a latent state variable deviates from the latent trait variable

E (Yi t |Ut ) by the latent situation variable E (Yi t |St ) and the person-situation interac-

tion variable E (Yi t |Ut ,St )−E (Yi t |Ut )−E (Yi t |St ).

4.4 How can we use traits in empirical research?

4.5 Implications for design of empirical studies



4 DISCUSSION 27

σ(ξi1) ⊂F1

{S1=s1} ∈F2

σ(τi1) ⊂F2

{Yi1=yi1} ∈F3

σ(Yi1) ⊂F3

{U2=u2} ∈F4

σ(ξi2) ⊂F4

{S2=s2} ∈F5

σ(τi2) ⊂F5

{Yi2=yi2} ∈F6

σ(Yi2) ⊂F6

{U3=u3} ∈F7

σ(ξi3) ⊂F7

{S3=s3} ∈F8

σ(τi3) ⊂F8

{Yi3=yi3} ∈F9

σ(Yi3) ⊂F9

Figure 10. Venn diagram of a filtration with T = {1, . . . ,9}
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