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Preface

What is EffectLite?

EffectLite is a PC-program for the uni- and multivariate analysis of mean differences between

groups on outcome (or response) variables in designs with and without covariates. If there is

no covariate, then the unconditional mean differences are analyzed. If there is at least one

covariate, the conditional and the average (or ‘adjusted’) mean differences are analyzed (see

section 1.2.5).

EffectLite has been specially developed for the analysis of covariate-treatment-outcome de-

signs with two or more treatment groups, one of which can be a control group. Covariates can

be quantitative pretests and/or they can be qualitative blocking factors. There can be several

dependent (outcome) variables, and a treatment variable with several levels, such as ‘control’,

‘treatment 1’, ‘treatment 2’.

EffectLite acts as a pre- and post-processor for LISREL (Version 8).1 Although the use of

EffectLite and the interpretation of its results do not require detailed knowledge of LISREL, the

user does need to be acquainted with the theoretical background provided in this program de-

scription. A convenient introduction to EffectLite and its theoretical background is also avail-

able as a video online-course at www.metheval.uni-jena.de.

Why use EffectLite?

Outside the perfectly randomized experiment, unconditional mean differences with respect

to an outcome variable Y can be very misleading if used for the evaluation of a treatment or

intervention. It is well known that there can be a high positive (unconditional) mean differ-

ence in the outcome variable Y between an experimental (X=1) and a control group (X=0) in

the total population, even though there are high negative (conditional) mean differences in all

subpopulations,2 such as ‘males’ (Z=1) and ‘females’ (Z=0), constituting the total population.

Phenomena like this have led to the development of statistical procedures such as the anal-

ysis of covariance, in which the conditional mean differences in Y between treatment and

control are analyzed given the covariate Z . However, analysis of covariance does not allow

for interactions between the covariate Z and the treatment variable X . Such an interaction

means that mean differences (in the outcome variable Y ) between the groups represented by

X are different for different values (such as ‘male’ and ‘female’ or ‘high score on pretest’ or ‘low

score on pretest’) of the (qualitative or quantitative) covariate Z . Oftentimes these interactions

and the associated conditional mean differences are of considerable relevance for substantive

science, because they describe which treatment is good or bad for which type of persons.

Aside from the conditional effects, one is often still interested in the average effect of the

treatment as compared to the control. Examples like the Simpson paradox show that the un-

1LISREL (Jöreskog & Sörbom, 1996) is a copyright protected commercial program.
2Simpson’s paradox (see e.g. Steyer, 1992, 2003; Steyer, Partchev, Kröhne, Nagengast, & Fiege, 2007) is an exam-

ple in case.
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conditional mean difference does not represent the average effect if the treatment variable X

and the covariate Z are correlated and Z has an effect on Y . Instead, the average effect or

average mean difference has to be defined by the average of the conditional mean differences

(in the outcome variable Y ) between treatment and control, given the values of the covari-

ate. These averages of the conditional mean differences are the ‘average effects’ analyzed in

EffectLite. These average effects are also the differences between the ‘adjusted means’ which

are also computed. If it can be assumed that the covariate-treatment regression is unbiased

the average effects can also be interpreted as the average causal effects in the Neyman-Rubin

sense (see Steyer et al., 2007).

Although there are many programs designed to deal with the issues mentioned above,

EffectLite has the advantage of being more general than comparable programs because:

(a) It does not assume homogeneity of variances (in the univariate case with a single outcome

variable) or of covariance matrices (in the multivariate case with two or more outcome

variables) of the outcome variables between treatment groups.

(b) It allows analyzing mean differences between groups with respect to several manifest out-

come variables, one or more latent outcome variables, and a mixture of the two kinds of

outcome variables.

(c) It allows analyzing conditional and average effects with respect to several manifest covari-

ates or with respect to one or more latent covariates, and a mixture of the two kinds of

covariates.

(d) It estimates and tests average effects for non-orthogonal analysis of variance designs, pro-

vided that the covariates are specified as qualitative indicator variables. Other programs

typically do not test the average effect at all,3 and they do not treat the covariates as stochas-

tic regressors, which usually leads to invalid tests of the average effect.

(e) EffectLite produces results which are easily interpretable in the analysis of conditional and

of average effects (mean differences) between groups.

(f) EffectLite estimates and tests the average causal effects (Rubin, 1974, 1978), provided that

the covariates fulfil certain assumptions (see Steyer et al., 2007, for details).

New features in version 3

Version 3 of EffectLite introduces some new features:

• Cases with missing data can be deleted listwise (as before), or they can be kept; in the

latter case, full information maximum likelihood (FIML) estimation in LISREL will be

switched on automatically (cases with missing data on the treatment variable are always

deleted).

• In models involving latent variables, there are two major improvements in defining the

measurement model:

3This includes all programs for nonorthogonal analysis of variance computing Type I, II, III and IV sums of

squares.
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– There is now a common measurement model for all latent variables instead of sep-

arate models for latent covariates and latent outcome variables. This makes it pos-

sible to define latent variables that are attached to both outcome variables and co-

variates, as in the case of method factors. EffectLite will treat such latent variables

as covariates.

– Loadings can be fixed to any numerical value (not just to 0 or 1), and equality con-

straints may be imposed on two or more loadings.

• Another, less obvious, new feature is that all chi-squared tests reported by EffectLite are

now computed as Wald tests rather than likelihood ratio tests. The two kinds of tests are

asymptotically equivalent, which means that they behave increasingly similar as sample

sizes increase. Users will notice that the Technical Output screen now displays LISREL

output for just one model (rather than four); this is because Wald tests can be computed

from the unconstrained model alone.

• Starting with Version 3.1, there is a possibility to compute, examine, and save conditional

treatment effects for each row of the data file.
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1 The scope of EffectLite

In this chapter, we outline the theoretical foundations of EffectLite. This is inevitably a very

concise introduction, and the interested reader is referred to the much fuller discussion in

Steyer et al., 2007. The focus here is on the available analyses, and on the types of statistical

hypotheses tested by EffectLite. Explanations on how to actually use the program and how to

read its output are postponed until chapter 2.

The first important distinction is between analyses without or with covariates. Covariates

are variables that may correlate with the treatment variable, but are not affected (influenced)

by the treatment variables. Often the covariate is a quantitative pretest, but it could also be

a qualitative variable such as gender, or it could be a multivariate covariate consisting of a

quantitative pretest and gender, for instance.

1.1 Analysis without covariates

In this section we will consider analyses without covariates. This is very close to what is known

from uni- and multivariate analysis of variance with one between-group factor. The only ex-

tensions are: EffectLite also analyzes latent outcome variables and it does not presume homo-

geneity of variances (or of the variance-covariance matrices in the multivariate case) between

treatment groups. In section 1.2 we will turn to corresponding analyses with covariates.

1.1.1 Two groups

Assume for a moment that there is a single numerical outcome or response variable Y , and a

dichotomous variable X with values 0 (for the control or reference condition) and 1 (for the

treatment condition). In this case, the regression E (Y |X ) can always be represented as a linear

function of X :

E (Y |X ) = α0 +α1 ·X , (1.1)

with the intercept

α0 = E (Y |X=0) (1.2)

and the slope

α1 = E (Y |X=1)−E (Y |X=0). (1.3)

Hence, in the two-group case, the slope α1 can be identified by the difference between the

conditional expectations of Y between the two groups, and the intercept α0 is the expectation

E (Y |X=0) of Y in the reference group coded by X=0.

1.1.2 More than two groups

If X has three values, 0 (for control or reference), 1 (for treatment 1) and 2 (for treatment 2),

we need two indicator variables IX=1 and IX=2 indicating whether the observational unit is

assigned to treatment 1 (IX=1 = 1 and IX=2 = 0) or to treatment 2 (IX=1 = 0 and IX=2 = 1).

9
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Otherwise, IX=1 = 0 and IX=2 = 0, which means that the observational unit is assigned to the

control (reference) condition coded with X=0. Hence, in the three-group case, the regression

can be written:

E (Y |X ) = α0 +α1 · IX=1 +α2 · IX=2. (1.4)

The intercept α0 is now

α0 = E (Y |X ) = 0, (1.5)

and the two slopes are the two mean differences:

α1 = E (Y |X=1)−E (Y |X=0), (1.6)

α2 = E (Y |X = 2)−E (Y |X=0). (1.7)

Hence, with α1 we compare the expectation of Y under treatment 1 to its expectation under

control, and with α2 we compare the expectation of Y under treatment 2 to its expectation

under control.

The generalization to J +1 treatment conditions is obvious:

E (Y |X ) = α0 +α1 · IX=1 + . . . +αJ · IX=J , (1.8)

where each coefficient α j , j = 1, . . . , J , compares the expectation of Y in treatment condition j

to its expectation in the control condition X=0.

1.1.3 Null hypotheses

The null hypothesis of no effects (zero mean differences) between all groups simultaneously is

then:

H0 : α1 = α2 = . . . = αJ = 0. (1.9)

EffectLite also provides a significance test for each single effect α j to be zero.

Note that you may also consider several outcome variables Yi , i = 1, . . . , I , instead of just a

single outcome variable Y . In such a case, EffectLite simultaneously tests the hypothesis (1.9)

for all outcome variables.

As mentioned before, EffectLite does not assume homogeneity of variances (univariate case

with a single outcome variable) or covariance matrices (multivariate case with two or more out-

come variables) of the outcome variables between treatment groups. It also allows analyzing

mean differences between groups with respect to one or more latent outcome variables, and

with respect to a set of manifest and latent outcome variables. Last but not least, it allows an-

alyzing conditional and average effects with respect to one or more latent covariates, and with

respect to a set of the two kinds of covariates.

1.1.4 Optional assumptions on outcome (co)variances

In traditional univariate and multivariate analysis of variance, the variance (univariate case)

and the covariance matrix (multivariate case) of the outcome variables are assumed to be in-

variant between groups. This assumption can also be made in EffectLite. However, the default

is that the variances and covariances of the outcomes variables differ between groups. In fact,

if we assume that the effects of the treatments differ between individuals, we expect heteroge-

nous variances and covariances of the outcome variables between treatment groups, both in

the randomized experiment and in observational studies (see Steyer et al., 2007, for details).
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1.2 Analysis with covariates

EffectLite also analyses models with covariates. A covariate, which will be denoted by Z , is a

variable that may affect the treatment variable, e.g., by determining the treatment probabilities

P (X= j |Z=z). However, a covariate is defined such that it can not be affected by the treatment

variable X . Some typical examples in case are

(a) a manifest quantitative pretest,

(b) a manifest qualitative variable characterizing the observational unit such as gender, race,

or educational status,

(c) a latent quantitative pretest (fallibly measured, e.g., by two parallel forms),

(d) a second qualitative treatment variable that may be correlated with the focus treatment

variable, but which is not affected by the focus treatment variable,

(e) a squared covariate or a product Z1 ·Z2 of two covariates,

(f) a combination of all types of covariates mentioned above.

Note, however, that qualitative covariates such as sex or race can be accommodated in

the present version only by computing dummy variables and specifying them as new covari-

ates, before EffectLite is used. Whatever you select as components of the covariate vector

Z ≡ (Z1, . . . , ZQ ), EffectLite will work with a linear intercept function g0(Z ) and linear effect

functions g1(Z ), . . . , g J (Z ) (see below). Also note that, if there are two treatment variables (or

factors in the analysis of variance sense), one may define a new treatment variable, the values

of which are the pairs of values of the original two treatment variables. This would allow for a

simultaneous test of the effects of two treatment variables (factors).

1.2.1 Two groups

Again, assume for a while that there is a single continuous outcome variable Y , a dichotomous

treatment variable X with values 0 (for control) and 1 (for treatment). Additionally, we now

consider a (uni- or multivariate) covariate Z . In this case, the regression E (Y |X , Z ) can always

be written:

E (Y |X , Z ) = g0(Z )+ g1(Z ) ·X , (1.10)

with (an unknown) intercept function g0(Z ) and (an unknown) slope or effect function g1(Z ).

If the covariate Z is also dichotomous with values 0 and 1, the functions g0(Z ) and g1(Z )

can always be parameterized as linear functions of Z , i.e., g0(Z ) = γ00+γ01Z and g1(Z ) = γ10+

γ11Z . Equation (1.10) may then also be written

E (Y |X , Z ) = (γ00 +γ01 Z )+ (γ10 +γ11 Z ) ·X . (1.11)

The first index of the regression coefficients γ refers to the intercept function g0(Z ) and

the effect function g1(Z ), respectively. Considering the two conditional regressions of Y on X

given Z=z yields:

EZ=0(Y |X ) = γ00 +γ10 X (1.12)



12 Steyer & Partchev

EZ=1(Y |X ) = (γ00 +γ01)+ (γ10 +γ11) ·X . (1.13)

Hence, both the intercept and the slope of the conditional regressions of Y on X given Z=z

depend on values z of the covariate.

Interpretation of the regression coefficients. The interpretation of the regression coefficients

is simple: γ10 is the conditional effect (slope) of X if Z = 0, and γ10 +γ11 is the conditional effect

(slope) of X if Z = 1. Furthermore, γ00 is the intercept of the conditional regression of Y on X

given Z = 0, and γ00 +γ01 is the intercept of the conditional regression of Y on X given Z = 1.

The parameter γ11 is called the interaction parameter: If γ11 = 0, then the conditional effects of

X on Y given Z do not depend on the values z of Z , otherwise the conditional effects of X are

modified by Z . Hence, we call Z a modifier and γ10 +γ11 Z the conditional effect (slope) func-

tion or, simply, the effect (slope) function. A synonym for ‘modifier’ is moderator and the ‘effect

function’ is sometimes called moderator function (see e.g. Saunders, 1956 or Baron & Kenny,

1986).

1.2.2 Nonlinear effect functions

The models described above can be easily generalized to include nonlinear effect functions.

If Z is not dichotomous, the functions g0(Z ) ≡ γ00 + γ01Z and g1(Z ) ≡ γ10 + γ11Z in Equa-

tion (1.11) do not necessarily yield a saturated parameterization of the regression E (Y | X , Z ).

In this case, the linear functions in Equation (1.11) may have to be replaced by more general

functions, e.g., by polynomial functions of a higher degree, such as

E (Y |X , Z ) = (γ00 +γ01Z +γ02Z 2)+ (γ10 +γ11 Z +γ12 Z 2) ·X , (1.14)

or, if Z is discrete, by a parameterization using indicator (dummy) variables for the values of

the covariate Z , such as

E (Y |X , Z ) = (β00 +β01 · IZ=1 +β02 · IZ=2)

+ (β10 +β11 · IZ=1 +β12 · IZ=2) ·X .
(1.15)

In this equation we assume that Z has only the values 0, 1, and 2. We denote the parameters

by βs in order to make clear that they are different from the γs occurring in Equation (1.14).

Equations (1.14) and (1.15) represent saturated parameterizations of the regression E (Y |

X , Z ) if X has only two and Z has only three different values. These values can also be qualita-

tive, representing three educational backgrounds, for instance. This parameterization would

be appropriate, e.g., in a 2×3-factorial design with correlated factors, in which X is the treat-

ment variable. In the present version, however, the user has to use indicator or dummy vari-

ables replacing the original qualitative covariate before using EffectLite.

EffectLite uses functions for g0(Z ) and g1(Z ) which are linear in the parameters, whatever

the covariates provided by the user might be. If there are, e.g., two covariates Z1, Z2, and the

user provides also the product Z1 · Z2 as a third covariate, a special case of Equation (1.10) is

also
E (Y |X , Z ) = (γ00 +γ01 Z1 +γ02 Z2 +γ03 Z1 ·Z2)

+ (γ10 +γ11 Z1 +γ12 Z2 +γ13 Z1 ·Z2) ·X ,
(1.16)

where Z = (Z1, Z2). Version 3.0 of EffectLite does not produce these covariates by itself. Neither

does it produce the indicator variables IZ=1 and IZ=2 occurring in Equation (1.15).
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Summary. If X is a dichotomous variable with values 0 and 1, Equation (1.10) always holds

with (an unknown) conditional intercept function g0(Z ) and (an unknown) conditional effect

function g1(Z ), the values g0(z) and g1(z) of which are the conditional intercepts and condi-

tional effects (slopes) in the conditional regression of Y on X given Z=z, respectively. Inter-

action refers to all constellations in which the effect function g1(Z ) is not a constant, i.e., in

which the (conditional) effects of X on Y depend on the values z of Z .

1.2.3 More than two groups

If (the treatment variable) X has J +1 values, we generalize Equation (1.10) to:

E (Y |X , Z ) = g0(Z )+ g1(Z ) · IX=1 + . . .+ g J (Z ) · IX=J . (1.17)

In this equation, the variables IX=1, . . . , IX=J are indicator (or dummy) variables for the different

values of X indicating that X= j , for j = 1, . . . , J . If, for example, X is a qualitative variable

with values 0 (for control), 1 (for treatment 1), and 2 (treatment 2), the variable IX=1 could be

the indicator (or dummy) variable with values 0 and 1 indicating (with 1) whether or not an

observation is made under treatment 1 and IX=2 could be the dummy variable with values 0

and 1 indicating (with 1) whether or not an observation is made under treatment 2.

In principle, the functions g0(Z ), g1(Z ), . . . , g J (Z ) in Equation (1.17) can be any functions of

Z . Oftentimes, they can be parameterized as polynomial functions or as indicator variables of

the type just explained for the three-group case [see Equation (1.15)]. However, as mentioned

before, EffectLite assumes linearity in the parameters. This means that the user has to provide

the variables occurring in Equations (1.14) to (1.16), for instance. Note that each effect function

g j (Z ), j = 1, . . . , J , contains as its values g j (z) the (Z=z)-conditional mean differences between

group X= j and the group represented by X=0 (chosen as a reference or control group), i.e.:

g j (z) = E (Y |X=1, Z=z)−E (Y |X=0, Z=z). (1.18)

In the special case in which there is only one single covariate Z and all effect functions g j (Z ), j =

1, . . . , J , are linear, Equation (1.17) becomes

E (Y |X , Z ) = (γ00 +γ01Z )+ (γ10 +γ11Z ) · IX=1 + . . .+ (γJ 0 +γJ 1Z ) · IX=J . (1.19)

Considering the conditional regressions of Y on Z given X= j in three groups then yields:

EX=0(Y |Z ) = γ00 +γ01 ·Z = γ(0)
0 +γ(0)

1 Z , (1.20)

EX=1(Y |Z ) = (γ00 +γ10)+ (γ01 +γ11) ·Z = γ(1)
0 +γ(1)

1 Z , (1.21)

EX=2(Y |Z ) = (γ00 +γ20)+ (γ01 +γ21) ·Z = γ(2)
0 +γ(2)

1 Z . (1.22)

This shows that the regression coefficients occurring in Equation (1.19) can be computed

by conducting a multi-group analysis of the linear regressions of Y on Z within each of the

J +1 groups, and then taking the differences between these group-specific linear regressions

γ
( j )

0 +γ
( j )

1 Z andγ(0)
0 +γ(0)

1 Z . This is exactly the way EffectLite proceeds in all its analyses, whether

the covariates are manifest or latent.
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1.2.4 Average effects

If X is dichotomous with values 0 and 1, Equation (1.10) always holds, and the values g1(z) of

the effect function g1(Z ) are the conditional effects of X on Y given Z=z. Hence, it is straight-

forward to define the average effect of X on Y as the expectation of the effect function, i.e.

E [g1(Z )]. Since the values g1(z) are the (Z=z)-conditional effects of X on Y , the expectation

E [g1(Z )] is the average of the conditional effects of X on Y . Note that this definition of an aver-

age effect is unique and meaningful even if X and Z are correlated and if there is an interaction

between X and Z . Furthermore, note that this definition also applies to a multivariate vector Z

consisting of several univariate variables Z1, . . . , ZQ , which might be quantitative or qualitative.

In the latter case, these covariates may be transformed into indicator (or dummy) variables

representing the values of a qualitative covariate such as “socio-economic status” or “educa-

tion”, in such a way that the intercept and effect functions can be parameterized as functions

which are linear in the parameters [see Equations (1.14) to (1.16)].

If (the treatment variable) X has J +1 values, there will be J average effects: E [g j (Z )], j =

1, . . . , J , where the functions g j (Z ) are the effect functions occurring in Equation (1.17). Each of

these average effects is the average of the (Z=z)-conditional mean differences between group

X= j and the reference group X=0.

1.2.5 Adjusted means

The average effect E [g j (Z )] is also the difference between the adjusted means, i.e.:

E [g j (Z )] = E [EX= j (Y |Z )]−E [EX=0(Y |Z )]. (1.23)

This can be seen from Equation (1.17), considering the two cases X= j and X=0, and then

taking the expectation. Hence, if we are interested in the average effects of the treatment vari-

able X , i.e., in the averages E [g j (Z )], j = 1, . . . , J , of the conditional effects, we are interested

in the differences between the adjusted means E [EX= j (Y | Z )] and E [EX=0(Y | Z )]. EffectLite

estimates these adjusted means and their standards deviations for each treatment condition.

If one of the sufficient conditions for unbiasedness is fulfilled, the average effects E [g j (Z )] are

also the average causal effects of treatment j compared to treatment 0 (see Steyer et al., 2007,

for details).

1.2.6 Average effects given a treatment condition

EffectLite also estimates the average effects given a treatment condition, i.e., it estimates the

conditional expectations E [g j (Z ) | X=i ] for all pairs ( j , i ) of j ∈ {1, . . . J } and i ∈ {0,1, . . . J }. If

there are just two values of the treatment variable X , this means that EffectLite also estimates

the conditional expectations E [g1(Z ) |X=0] and E [g1(Z ) |X=1], i.e., the average effects of the

non-treated and of the treated, respectively. These average effects will differ from the average

effect E [g j (Z )] in the total population, if the treatment probabilities depend on the covariate

Z , i.e., if P (X=1 | Z ) 6= P (X=1). In this case, we can evaluate the treatment assignment policy

[described by P (X=1 | Z )] by comparing the two conditional expectations E [g1(Z ) | X=0] and

E [g1(Z ) | X=1] against each other. If E [g1(Z ) | X=0] > E [g1(Z ) | X=1], one might think about

revising the treatment assignment policy, because this comparison would then indicate that

the average effect of the non-treated would be greater if they would be treated in the future.
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See Steyer et al. (2007) for more details and the necessary assumptions allowing for this causal

inference.

1.2.7 Null hypothesis: No average treatment effects

Although, if there is interaction, it is certainly more informative to consider the effect function

and its values, the conditional effects, researchers may often also be interested in whether or

not the average effect of the treatment X= j (on the outcome Y ) compared to the control X=0,

i.e., E [g j (Z )], differs from zero. The null hypothesis of no average effects (zero mean differ-

ences) between all J groups simultaneously is then:

H0 : E [g1(Z )] = E [g2(Z )] = . . . = E [g J (Z )] = 0. (1.24)

If X is dichotomous with values 0 and 1, Z is a univariate covariate, and g1(Z ) is a linear

effect function, the null hypothesis of no average effect (zero average mean difference between

the two groups) is:

H0 : E [g1(Z )] = E (γ10 +γ11 ·Z ) = γ10 +γ11 ·E (Z ) = 0. (1.25)

[see Equations (1.11) and (1.24)].

For three treatment groups and a two-dimensional covariate Z = (Z1, Z2), the model is

E (Y |X , Z ) = g0(Z )+ g1(Z ) · IX=1 + g2(Z ) · IX=2

= (γ00 +γ01Z1 +γ02 Z2)+ (γ10 +γ11 Z1 +γ12 Z2) · IX=1

+ (γ20 +γ21 Z1 +γ22 Z2) · IX=2,

(1.26)

and the null hypothesis of no average treatment effects is:

H0 : E [g1(Z )] = E [g2(Z )]

= E (γ10 +γ11Z1 +γ12 Z2) = E (γ20 +γ21Z1 +γ22Z2)

= γ10 +γ11E (Z1)+γ12E (Z2) = γ20 +γ21E (Z1)+γ22E (Z2) = 0.

(1.27)

1.2.8 Null hypothesis: intercept function is constant

EffectLite also provides a test for the hypothesis that the intercept function g0(Z ) is a constant,

i.e.:

g0(Z ) = γ00. (1.28)

According to this hypothesis the expectation(s) of the outcome variable(s) in the control (or

reference) group coded with X=0 do not depend on the covariate(s). If the covariate is a pre-

test and the outcome variable the post-test, this hypothesis will usually not hold. EffectLite also

estimates the function g0(Z ). However, even if this hypothesis holds for a given covariate, this

covariate should be considered as long as there is an interaction with the treatment variable.
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1.2.9 Null hypothesis: no interaction

EffectLite also provides a test for the hypothesis that there is no interaction between treatment

and the covariates. According to Equation (1.17) this means that the effect functions are con-

stants, i.e.:

g1(Z ) = γ10, g2(Z ) = γ20, . . . , g J (Z ) = γJ 0. (1.29)

In any case, i.e., irrespective of whether or not there are interactions, the program also esti-

mates the effect functions. This allows to test hypotheses about the individual coefficients in

these effect functions.

1.2.10 Null hypothesis: No treatment effects

Another hypothesis tested in EffectLite is the hypothesis of no treatment effects. In terms of

Equation (1.17) the hypothesis is:

H0 : g1(Z ) = g2(Z ) = . . . = g J (Z ) = 0. (1.30)

This means that there neither conditional effects given Z nor average effects of the treatments

on the outcome variable Y . If several outcome variables are considered, this hypothesis is

tested simultaneously for all outcome variables.

1.2.11 Null hypotheses about conditional effects

Inspecting Equations (1.11) or (1.14) to (1.16) shows that the intercept function g0(Z ) and the

effect functions g j (Z ) contain parameters to be estimated. Hence, the estimate of each of

these parameters has a standard error and a t-value for the test of the null hypothesis that the

parameter is zero. EffectLite provides these standard errors and the t-values.

As mentioned before, EffectLite does not assume homogeneity of variances (univariate case

with a single outcome variable) or covariance matrices (multivariate case with two or more

outcome variables) of the outcome variables between groups. This also applies to the estimates

of the standard errors and to the t-values mentioned above.

1.2.12 Several outcome variables

Note that you may also consider several outcome variables Yi , i = 1, . . . , I , instead of just a

single outcome variable Y . In such a case, EffectLite provides overall significance tests of the

hypotheses (1.24), (1.28), (1.29), and (1.30) for all outcome variables simultaneously.

1.2.13 Sampling models

The unconditional (w.r.t. the treatment groups) expectations of the covariates, E (Z ), appear in

the formulae for the average effects and the adjusted means of the outcomes. Therefore, the

sampling variability of E (Z ) must be considered in inferences (error estimation or hypothesis

testing) about these quantities.

Since the underlying multi-group SEM-model does not include the E (Z ) as explicit param-

eters, our current approach is to construct these as weighted averages of the group-specific

covariate expectations, E (Z j ), with group sizes serving as weights. Now, group sizes can be
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random quantities, as is usual in observational studies, or they can be fixed by design, as is

more typical of experimental research. EffectLite allows a choice between these two possibili-

ties. In the latter case, group sizes are still calculated from the data, but we pretend that they are

known constants by fixing their variances and covariances to zero in subsequent inferences.

A similar choice is available for the covariate expectations, E (Z ). If there are good reasons

to think of the Z as fixed regressors, one can treat the E (Z ) as known constants having no stan-

dard errors (and no correlation with other parameter estimates). In that case, EffectLite will

also treat group sizes as known constants. The default is to treat both group sizes as covariate

expectations as random variables subject to sampling variability.

1.2.14 Optional assumptions about covariates

In the perfectly randomized experiment, the distributions of all pre-treatment variables will be

identical in the population. Since the covariates are assumed to be such pre-treatment vari-

ables, the means, the variances and the covariances of the covariates can, in the case of such a

randomized experiment, be assumed to be invariant across groups, if the covariates are man-

ifest. If the covariates are latent (see section 1.3.1), the variances of the measurement error

variables can be assumed to be invariant across groups as well.

1.2.15 Residual variances and covariances

EffectLite also computes the group-specific variance(s and covariances) of the residual(s) of

the regression of the outcome variable(s) on the covariate(s). These variance(s) (and covari-

ances) of the residuals are also computed if the covariate(s) and/ or the outcomes variable(s)

are latent. If the control-group-specific variance of the residual in the regression of the out-

come variable on the covariate is not significantly different from zero, one might consider an

individual-causal-effect model (see, e.g., Steyer, 2005). Such an IC E -model cannot be ana-

lyzed via EffectLite. It can be analyzed, however, using the traditional software for structural

equations.

1.3 Latent covariates and latent outcome variables

1.3.1 Latent covariates

It was mentioned before that EffectLite can also handle models with one or more latent covari-

ates. This means that we can also analyze conditional and average effects (group means) in

the case when Z is replaced by a latent covariate ξ or (a vector of) several ξs. Of course, latent

covariates need a measurement model. In Version 3.0 of EffectLite we may use the model of

essentially τ-equivalent or the model of τ-congeneric variables and we also allow for method

factors as defined by Pohl, Steyer, & Kraus, 2007. These method factors, which are also consid-

ered to be covariates, are important for a valid measurement model if the manifest measures

of the latent covariate(s) are pre-tests and the same measurement instruments are applied in

assessing the post-tests, the manifest measures of the latent outcome variable(s).

For two manifest measures Z1 and Z2 and a single latent covariate ξ within each group

j = 0,1, . . . , J , the model of τ-congeneric variables is defined by the following assumptions:
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Z1 = λ10 +λ11 ·ξ+εZ1 = 0+1 ·ξ+εZ1 , (1.31)

Z2 = λ20 +λ21 ·ξ+εZ2 , λ20,λ21 ∈R (1.32)

Cov(ξ,εZi
|X= j ) = Cov(εZ1 ,εZ2 |X= j ) = 0, i = 1,2 j = 0,1, . . . , J . (1.33)

With intercept 0 and loading 1 in Equation (1.31) we fix the scale of the latent variable ξ (see

Steyer, 2001 or Steyer & Eid, 2001, for a more detailed presentation of these models). The in-

tercepts λ10 = 0 and λ20 as well as the loadings λ11 = 1 and λ21 in the group-specific mea-

surement models are assumed to be invariant across treatment groups. This allows for mean

differences of the latent covariates between treatment groups. The measurement error vari-

ances Var (εZ1 | X= j ) and Var (εZ2 | X= j ) can be assumed to be invariant across groups. The

default is that they are different across groups.

In the model of essentially τ-equivalent variables, both loadings λ11 and λ21 are fixed to 1.

The generalization of both kinds of models to three or more manifest measures of a latent co-

variate is obvious. Usually, each manifest variable has only one single non-zero loading on one

of the latent variables. However, the user may also specify measurement models with more

than one non-zero loading of some of the manifest variables. This is necessary, e.g., in speci-

fying method factors (see section 1.3.6). The only limit is the general identification problem in

latent variable modeling.

If there are several latent covariates, we assume that each latent covariate has its own (two

or more) manifest measures for which one of the two models described above holds. If we

want to have a model consisting of a latent covariate and a manifest covariate, we assume that

the manifest covariate measures its own ‘latent covariate’ (a ‘dummy factor’) with an intercept

fixed to 0, a loading fixed to 1 and a zero variance of the measurement error variable.

1.3.2 Two groups

Figure 1.1 represents the path diagram of a simple model of this type with two manifest mea-

sures of the latent covariate ξ, a dichotomous group (treatment) variable X , and a single out-

come variable Y . In version 3.0 of EffectLite, we allow for

(a) several latent covariates,

(b) linear intercept and effect functions of the latent covariates, and

(c) measurement models with free loadings.

More than two groups are possible. The (distribution of the) group variable X may depend

on the latent variable. However, although this dependency is allowed and taken into account in

the model, it is not analyzed by EffectLite. Note that the analysis of conditional effect functions

is also of interest even if X and ξ are independent, because they are a useful tool to study

interaction, i.e., to study how the effect of X is modified by the latent covariates.

Figure 1.2 represents the same model as Figure 1.1. However, Figure 1.2 shows an extra

path diagram for each of the two groups. These two path diagrams show that the slope of the
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linear regression of the outcome Y on the latent covariate ξ may be different in each of the two

(treatment) groups.1

Z1

Z2

Y

X

ξ

εZ1

εZ2

ζ

g1(ξ)

Figure 1.1: Path diagram of a conditional ef-

fects model with a latent covariate

X=0

Z1

Z2

Y

ξ

εZ1

εZ2

ζ

γ01

X=1

Z1

Z2

Y

ξ

εZ1

εZ2

ζ

γ01 +γ11

Figure 1.2: A two-group presentation of the

conditional effects model with a latent covari-

ate

Furthermore, the difference between the two slope coefficients of the regression of Y on ξ

in group X=1 and X=0 is γ11, the interaction parameter occurring in the equation

E (Y |X ,ξ) = (γ00 +γ01ξ)+ (γ10 +γ11ξ) ·X . (1.34)

This equation is the same as Equation (1.11) that was already considered in the case of a mani-

fest covariate. The only difference is that the covariate is now denoted ξ instead of Z , and that,

in specific empirical applications, Equation (1.34) can be wrong, because ξ is not dichotomous

but assumed to be a latent continuous variable.

1.3.3 More than two groups

For the case of a latent covariate, Equation (1.17) may be rewritten

E (Y |X ,ξ) = g0(ξ)+ g1(ξ) · IX=1 + . . .+ g J (ξ) · IX=J , (1.35)

replacing the manifest covariate Z by the latent variable ξ. Assuming that all effect functions

g j (ξ), j = 1, . . . , J are linear, Equation (1.35) becomes

E (Y |X ,ξ) = (γ00 +γ01ξ)+ (γ10 +γ11ξ) · IX=1 + . . .

+ (γJ 0 +γJ 1ξ) · IX=J .
(1.36)

Considering the conditional regressions of Y on ξ given X = x in three groups yields:

EX=0(Y |ξ) = γ00 +γ01 ·ξ, (1.37)

EX=1(Y |ξ) = (γ00 +γ10)+ (γ01 +γ11) ·ξ, (1.38)

EX=2(Y |ξ) = (γ00 +γ20)+ (γ01 +γ21) ·ξ. (1.39)

1Allowing for (a) different slopes in the groups and (b) the covariate to be latent, distinguishes this model

from the traditional analysis of covariance model, which does not consider interaction between treatments and

covariates.
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This shows that the regression coefficients occurring in Equation (1.36) can be computed by

performing a multi-group analysis, and then taking the differences between the group-specific

linear regressions of the outcome variable Y on the covariate ξ. As noted before, this is exactly

the way EffectLite proceeds in all its analyses, whether the covariates are latent, manifest, or

not there at all.

1.3.4 Latent outcome variables

EffectLite handles latent outcome variables just in the same way as it handles latent covariates.

This means that all analyses considered before, i.e., the analysis of conditional and average

mean differences given manifest covariates or latent covariates, can be done also for the case in

which the outcome variable(s) is (are) latent. The measurement model for the latent outcome

variables is of the same type as the measurement model for the latent covariates. Hence, for

two manifest measures Y1 and Y2 of a latent outcome variable η, this measurement model

within each group j is defined by:

Y1 = κ10 +κ11 ·η+εY1 = 0+1 ·η+εY1 , (1.40)

Y2 = κ20 +κ21 ·η+εY2 , κ20,κ21 ∈R, (1.41)

Cov(η,εYi
|X= j ) = Cov(εY1 ,εY2 |X= j ) = 0, i = 1,2, j = 0,1, . . . , J . (1.42)

Hence, again the intercepts and the loadings (the slopes) in this measurement model are as-

sumed to be invariant across groups. The variances of the measurement error variables Var(εY1|

X= j ) and Var(εY2 |X= j ) can be assumed to be equal or different between groups.

EffectLite also allows for three or more manifest measures of each latent outcome variable.

Any combination of a manifest or a latent covariate with a manifest or latent outcome vari-

ables is possible. If both, covariates and outcome variables, are latent, it is assumed that the

measurement error variables of the latent covariates and the latent outcomes are uncorrelated

within treatment group j , i.e.:

Cov(εZi
,εYk

|X= j ) = 0 for all pairs (i ,k), i ,k = 1,2. (1.43)

Note that this assumption is often violated in pretest-treatment-posttest designs. When

a measurement instrument is applied repeatedly, it often happens that the associated mea-

surement errors are correlated. This will lead to a bad fit of the model described above, and

sometimes the estimation algorithm does not converge. As a simple remedy, one can spec-

ify the outcome variables as manifest rather than latent. A more sophisticated remedy is to

introduce one or several method factors (see section 1.3.6).

As mentioned before, the measurement model is fixed between treatment groups in or-

der to allow for between-group comparisons of the means of the latent variables. In pretest-

treatment-posttest designs, we may want to fix the measurement also across time, between

pre- and post-test measures. This is not absolutely necessary for effect estimation based on

between-group comparisons. Nevertheless, it is a plausible assumption that may be intro-

duced into the measurement model. In version 3.0 of EffectLite the user can specify such a

model.

Equations (1.34) to (1.39) also apply to the case in which we have a latent outcome variable

η instead of the manifest outcome variable Y . The path diagrams in Figures 1.1 and 1.2 are

now replaced by Figures 1.3 and 1.4, respectively.
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Figure 1.3: Path diagram of a conditional ef-

fects model with a latent covariate and a latent

outcome variable
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Figure 1.4: A two-group presentation of the

conditional effects model with a latent covari-

ate and a latent outcome variable. The latent

variables ξ1 and ξ2 are allowed to correlate.

1.3.5 Optional assumptions about latent outcome variables

If the outcome variables are latent (see section 1.3.4), the variances of the measurement error

variables can be assumed to be invariant across groups. This is an assumption that may or may

not hold both, in the randomized experiment and in quasi-experiments.

1.3.6 Method factors

As mentioned before, the assumption of uncorrelated measurement errors is often violated in

pretest-treatment-posttest designs. When a measurement instrument is applied repeatedly,

it often happens that the associated measurement errors are correlated. This will lead to a

bad fit of the model described in section 1.3.4. A remedy is to include a method factor, the

values of which are the effects of using method 2 instead of method 1 (see Pohl et al., 2007,

for more details). If two methods are designed to measure the same latent variable on the

same scale, such a method factor is defined by the difference in the true-score variables of the

two measurement methods. Assuming that this difference does not change over time leads to

the measurement model depicted in Figure 1.5. This model is assumed to hold within each

treatment group j . Only the effects of the latent covariates on the latent outcome variables, the

residual variances, and the variances of the measurement error variables are allowed to differ

between groups. The intercepts and loadings are assumed to be equal between groups.

1.4 Tests of unconfoundedness

EffectLite has been developed for the analysis of causal effects in experiments and quasi-ex-

periments, i.e., in observational studies involving a treatment variable. However, it should

be emphasized that a causal interpretation of the mean differences in the analyses without

covariates, and of the average and conditional effects in the analyses with covariates is valid

only if certain assumptions hold. In this case, we also say that the regressions E (Y |X ) and/or

E (Y |X , Z ) are causally unbiased (see Steyer et al., 2007 for details of this and related concepts).
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Figure 1.5: A two-group presentation of the conditional effects model with a latent covariate, η, a

latent outcome variable, ξ1, and a method factor, ξ2

Sufficient conditions for causal unbiasedness of the two regressions E (Y |X ) and E (Y |X , Z )

always refer to ‘potential confounders’. Potential confounders are (observed or unobserved)

pre-treatment variables or other variables that cannot be affected by the treatment variable.

Hence, potential confounders are covariates that are not specified as a covariate in EffectLite.

Such a potential confounder will be denoted by W in the sequel.

1.4.1 Analysis without covariates

In analyses without covariates, a sufficient condition for the validity of a causal interpretation

of the mean differences between treatment groups represented by X is that, for each potential

confounder W (including also unobserved manifest and latent confounders), X and W are

independent, i.e.:

P (X= j |W ) = P (X= j ), for each j = 0,1, . . . , J . (1.44)

This condition will hold in the perfect randomized experiment, in which the probability of be-

ing in treatment j does not depend on the observational unit (individual), nor on any measure

that is assessed (or that could be assessed) before the unit is assigned to one of the treatment

conditions.

Unconfoundedness of the treatment regression. A less restrictive sufficient condition for

the validity of a causal interpretation of the mean differences between treatment groups is

that, for each treatment condition j = 0,1, . . . , J , and each potential confounder W

(a) P (X= j |W ) = P (X= j )

and/or

(b) EX= j (Y |W ) = EX= j (Y ).

This condition is called unconfoundedness of the treatment regression E (Y |X ).2

2Other, sufficient conditions for the validity of a causal interpretation of the mean differences between treat-

ments groups are treated in Steyer et al. (2007).
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Postulating (a) or (b) for a given potential confounder W implies:

EX= j (Y ) = E [EX= j (Y |W )], for each value j of X . (1.45)

This hypothesis [Equation (1.45)] is tested in version 3.0 of EffectLite if W is specified as the

covariate. It holds if the means of the outcome variables in the treatment conditions do not

differ significantly from their corresponding adjusted means.

If the analysis suggests that Equation (1.45) does not hold, and if there is no reason to

assume that one of the other sufficient conditions for causal unbiasedness of the regression

E (Y |X ) holds, then the potential confounder W should be included in the analysis as a covari-

ate and causality tests should be conducted with another potential confounder, as outlined in

the next section.

1.4.2 Analysis with covariates

As mentioned before, a covariate Z can be uni- or multivariate, manifest or latent. In analyses

with such a covariate, a sufficient condition for the validity of a causal interpretation of the

average effects and the conditional effects of the treatment variable X is that, for each potential

confounder W , the treatment variable X and W are conditionally independent given Z , i.e.:

P (X= j |Z ,W ) = P (X= j |Z ), for each j = 0,1, . . . , J . (1.46)

This condition will hold in the perfect conditionally randomized experiment, in which the

probability of being in treatment j may depend on Z , but on no other attribute of the observa-

tional unit (individual), nor on any other measure assessed before the unit is assigned to one

of the treatment conditions.

Unconfoundedness of the covariate-treatment regression. A less restrictive sufficient con-

dition for the validity of a causal interpretation of the conditional and average effects is that,

for each treatment j = 0,1, . . . , J , and each potential confounder W

(a) P (X= j |Z ,W ) = P (X= j |Z )

and/or

(b) EX= j (Y |W , Z ) = EX= j (Y |Z ).

This condition is called Z -conditional unconfoundedness of the covariate-treatment regression

E (Y |X , Z ).3 Postulating (a) or (b) for a given potential confounder W implies:

EX= j (Y |Z ) = E [EX= j (Y |Z ,W ) |Z ], for each value j of X . (1.47)

Although version 3.0 of EffectLite does not provide the test, let us outline how to test un-

confoundedness of the covariate-treatment regression E (Y |X , Z ). Suppose for a moment that

Z and W are unidimensional numerical variables. In this case, the hypothesis (1.47) that the

3Other, sufficient conditions for the validity of a causal interpretation of the conditional and average effects are

treated in Steyer et al. (2007).
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covariate-treatment regression is unconfounded can also be tested if we can make the assump-

tions

EX= j (Y |Z ,W ) = α
( j )
0 +α

( j )
1 Z +β

( j )
1 W , for each j = 0,1, . . . , J (1.48)

and

E (W |Z ) = γ0 +γ1Z . (1.49)

Under these assumptions, Equation (1.47) yields:

EX= j (Y |Z ) = γ
( j )
0 +γ

( j )
1 Z , (1.50)

with

γ
( j )
0 = α

( j )
0 +β

( j )
1 γ0 and γ

( j )
1 = α

( j )
1 +β

( j )
1 γ1. (1.51)

Hence, we can test the null hypothesis that Equations (1.51) hold, if we want to test uncon-

foundedness of the covariate-treatment regression E (Y |X , Z ).

This procedure can be generalized to several covariates Z1, . . . , ZQ and potential confounders

W1, . . . ,WR . In this case, unconfoundedness of the covariate-treatment regression [see Eq. (1.47)]

can be tested if we can assume:

EX= j (Y |Z ,W ) = α
( j )
0 +

Q
∑

q=1

α
( j )
q Zq +

R
∑

r=1

β
( j )
r Wr , for each j = 0,1, . . . , J , (1.52)

and

E (Wr |Z ) = γr 0 +

Q
∑

q=1

γr q Zq , for each r = 1, . . . ,R . (1.53)

If the covariate-treatment regression is unconfounded and Equations (1.52) and (1.53) hold,

then, for each treatment j = 0,1, . . . , J ,

EX= j (Y |Z ) = γ
( j )
0 +

Q
∑

q=1

γ
( j )
q Zq , (1.54)

with

γ
( j )
q = α

( j )
q +

R
∑

r=1

β
( j )
r ·γr q , q = 0,1, . . . ,Q, (1.55)

(for a proof see Steyer et al., 2007).

Hence, assuming Equations (1.52) and (1.53), we can test the null hypothesis that Equa-

tions (1.55) hold, if we want to test unconfoundedness of the covariate-treatment regression

E (Y | X , Z ) [see Eq. (1.47)]. If the analysis suggests that Equation (1.47) has to be rejected

and if none of the sufficient conditions for causal unbiasedness of the regression E (Y | X , Z )

holds for a given confounder W , then the confounder W should be included in the analysis

as another covariate and tests of unconfoundedness should be conducted with another po-

tential confounder W ∗, if available, i.e., the procedure described above should be repeated for

E (Y |X , Z∗) with Z∗ ≡ (Z W ) replacing the original covariate Z and W ∗ replacing the original

potential confounder W .

Note that we can be sure about causal unbiasedness of E (Y |X , Z ) only if the experimenter

fixes the conditional treatment probabilities P (X= j | Z ). In all other cases, causal interpreta-

tions of conditional and average causal effects will always be preliminary and rest on assump-

tions that can only be falsified via causality tests, some of which have been described above. A

verification of the sufficient conditions for the validity of those causal interpretations in obser-

vational studies is not possible.
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1.5 Missing values

Version 3.0 of EffectLite will yield correct estimates of parameters and valid tests of null hy-

potheses even if there are missing values in the outcome variables. However, in this case we

have to assume (a) that the covariates determining the probability that a value in one or more

or even all of the outcome variables is missing are included as a covariate, and (b) that, within

each treatment condition, the distribution of the covariates and outcome variables is multi-

variate normal. Assumption (b) assures that the full information maximum likelihood estima-

tion (FIML) used in the background SEM program yields (i) unbiased estimates of the regres-

sions of the outcome variables on the covariates within treatment conditions, and (ii) unbiased

estimates of the expectations of the covariates in the treatment conditions. Without (i) and (ii)

EffectLite may compute biased estimates. Since covariates only contain pretest information,

assuming missing values only in the outcome variables is not too unrealistic, as long as sys-

tematic attrition only occurs after the covariates (often pre-tests) are assessed.

If assumptions (a) and (b) hold, then EffectLite will compute unbiased estimates of the ex-

pectations of the original outcome variable in the treatment groups (“raw means”), unbiased

effect functions, unbiased estimates of the adjusted means, and unbiased average causal ef-

fects, provided that the FIML option is used (see section 2.3). Missing data as described above

will only reduce statistical power as compared to a sample with no missing values. Note that

multiple imputation (see, e.g., Little & Rubin, 2002) would not improve the quality of the esti-

mates under these assumptions. Also note that, under assumptions (a) and (b), listwise dele-

tion of cases with missing values may lead to seriously biased means of the outcome variable,

biased average effects, and biased adjusted means.

Hence, in the case of missing values, it is essential to

• select ‘FIML’ on the Open Data screen, and

• include in the model all covariates that might play a role in predicting the probability

that a value is missing on the outcome variable(s) or on the covariates.

To date it is still not clear if assumption (b) of multivariate normality can be replaced by a

weaker assumption allowing also for non-normal covariates and whether or not we can allow

for missingness completely at random in those covariates that do not determine missingness in

the outcome variables. Bias can occur if there is missingness in a covariate that also determines

missingness in one of the outcome variables.

1.6 Inferential techniques in EffectLite

In this section, we provide a brief and informal discussion of the statistical techniques used

when testing statistical hypotheses and estimating the standard errors of the various statistics

reported by EffectLite.

As mentioned above, EffectLite depends on the work of a standard program for structural

equations models (SEM) such as LISREL. SEM programs typically implement some sort of max-

imum likelihood estimation (MLE), and report a vector of parameter estimates along with an

estimate of their variance-covariance matrix. In our case, the SEM is a certain kind of multi-

group regression model, possibly multivariate and/or involving latent variables. Once that the
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SEM is estimated, EffectLite computes some new statistics, which are functions of the param-

eters in the original model and are relevant to causal analysis. EffectLite also estimates the

standard errors of the new statistics and tests various statistical hypotheses. Each hypothesis

can be expressed as a set of constraints on the parameters of the SEM.

Let us denote the vector of parameter estimates in a SEM with θ̂, and their (estimated)

variance-covariance matrix as V(θ̂). Suppose we have a new parameter, say ϑ, defined as a

function of the original parameters, i.e., ϑ= f (θ). From standard statistical theory, the function

of the parameter estimates is the estimate of the function of parameters: f (θ̂) = f̂ (θ) = ϑ̂. For

the asymptotic distribution of ϑ̂, it can be shown that

ϑ̂−ϑ

σ̂ϑ̂

 N (0,1). (1.56)

The standard error, σϑ̂, can be estimated as

σ̂ϑ̂ =

√

(∇̂ f )′V(θ̂)(∇̂ f ), (1.57)

where ∇̂ f is the gradient (vector of partial derivatives with respect to θ1,θ2, . . . ,θk ) of function f

evaluated at θ = θ̂. In statistics, Equations (1.56)–(1.57) are known as the multiparameter delta

method (see, e.g., Wasserman, 2004).

In EffectLite, we are typically interested in sets of new parameters such as average effects or

adjusted means. To estimate their standard errors, one simply collects the gradients for all new

parameters as the column vectors of a matrix, J, and computes the variance-covariance matrix

of the new parameters as

V(ϑ̂) = J′V(θ̂)J. (1.58)

The standard errors of the new parameters are then the square roots of the diagonal elements

in the resulting matrix.

The many hypotheses tested by EffectLite are all expressed as sets of constraints imposed

on the parameter estimates in the underlying SEM. There are many ways to construct statistical

tests for such constraints, but the most popular ones are the likelihood ratio test, the Wald test,

and the Lagrange multiplier test. Figure 1.6, adapted from Greene (1997), helps explain the

basic idea behind each type of test.

Let logL(θ) be the log likelihood function, which reaches its unconstrained maximum,

logL, at point θ̂MLE, the maximum likelihood estimate. We also have a constrained estimate,

θ̂R, at which the log likelihood has a value of logLR. Because the constrained solution is sub-

optimal, logLR is smaller than the unconstrained maximum likelihood, logL. The difference

logL − logLR forms the basis for the likelihood ratio test of significance for the constraint. The

test statistic is defined as −2 log(LR/L); it has an asymptotic χ2 distribution with as many de-

grees of freedom as the number of constraint functions imposed simultaneously on θ̂.

Just like the new parameters, the constraints defining a hypothesis to be tested are func-

tions of θ — say, c(θ) for the simplest case of one constraint function on a single parameter θ.

The value of this function is exactly zero at the constrained estimate. If the constrained and the

unconstrained solutions are not too different, its absolute value at the unconstrained estimate

should not be very large. This is the logic behind the Wald test.

In our case, there is usually a whole vector of parameters,θ, and most of the hypotheses that

we want to test involve more than one constraint function on θ. Let c(θ̂) be a vector containing
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θ
0

logL

θ̂MLE

logL(θ)

θ̂R

logLR

LR test
c(θ)

Wald test

∂ logL(θ)/∂θ

LM test

Figure 1.6: An illustration of the likelihood ratio (LR), test, the Wald test, and the Lagrange multi-

plier (LM) test; see text for explanation

the values of all constraint functions related to a hypothesis, at the unconstrained solution.

The Wald test for the hypothesis H0 : c(θ̂) = 0 can then be computed as

W = c(θ̂)′(V̂[c(θ̂)])−1c(θ̂). (1.59)

Because the constraints are functions of the original SEM parameters, their variance-covariance

matrix, V[c(θ̂)], can be estimated by the delta method [Equation (1.58)]. The Wald test is

asymptotically equivalent to the likelihood ratio test: in large samples, it has the same χ2 dis-

tribution with as many degrees of freedom as the number of constraint functions imposed on

θ̂.

The first derivative of the log likelihood, ∂ logL(θ)/∂θ, is zero at the unconstrained MLE. For

any constrained, i.e., suboptimal solution, the derivative deviates from zero, and can therefore

be used to test whether the constraint brings about a sizeable departure from the optimum.

This is the logic behind the Lagrange multiplier test, which is asymptotically equivalent to the

likelihood ratio test and the Wald test.

Hence, the Lagrange multiplier test requires the constrained estimates and tests for the

improvement in fit associated with lifting one or more constraints, while the Wald test re-

quires the unconstrained estimates and tests for the loss of fit associated with imposing one

or more constraints. Finally, the likelihood ratio test requires both the constrained and the

unconstrained estimates, and is hence more expensive to calculate.

In earlier versions of EffectLite, we used likelihood ratio tests, which have now all been

replaced with Wald tests. This has two important advantages:

• it is now sufficient to estimate just the unconstrained model. The earlier approach re-

quired the estimation of many constrained models, one for each hypothesis tested. This

was a lot of work and ran a higher risk that estimation might fail for at least one of the

models;

• some of the parameters used in defining the constraints are not a part of the underlying

SEM, and had to be obtained in fairly artificial ways. We still have to compute them, but

the only extraneous information needed are the proportions of the treatment groups in

the sample. We simply augment the variance-covariance matrix reported by LISREL with

the variances and covariances of these proportions; when group sizes are fixed by design,

we augment with a zero matrix instead.



28 Steyer & Partchev



2 Detailed program description

2.1 Before you begin

Because it depends on LISREL, EffectLite must know if, and where, LISREL is installed. The

first time it is run, EffectLite will remind you to complete the installation by providing this vital

information. Basically, you have two options: search for the LISREL .exe file, or use EffectLite

without LISREL; in the latter case, you can generate and examine LISREL command language

for all models in EffectLite, but you cannot fit the models and obtain additional output.

To search for LISREL, navigate the file system until you reach the folder where LISREL is

installed. Double-click on the .exe file: something like lisrel87.exe (NOT LisWin32.exe!). For

older versions, the 87 is replaced with, say, 85.

In English-speaking countries, the standard location for the LISREL .exe file is

C:\Program Files\LISREL87\lisrel87.exe

EffectLite works fine with the student edition of LISREL 8.7, in which case the standard lo-

cation for the .exe file is

C:\Program Files\LISREL87s\lisrel87s.exe

In other countries,Program Files is replaced with a nationalized version, e.g. Programme
in Germany. However, we have noticed that LISREL tends to install in Program Files even

in non-English-speaking countries.

Normally, the search for LISREL is only necessary before you run EffectLite for the first time.

You will have to repeat it if you log on as a different user, or if EffectLite cannot find LISREL

where it is supposed to be. You can repeat it at any time by going, via the EffectLite menu, to

the LISREL Location screen.

2.2 A normal run of EffectLite

EffectLite is organized in a series of screens. Most screens have a Continue button. Set the

options on each screen as necessary and click on Continue — this takes you to the next screen,

or it may display a warning message if you forgot to set some vital option.

The menu above the main window provides access to all screens, but some of the entries

may be dimmed depending on the stage of analysis. You can use the menu to go back to a

previous screen and change some analysis options, open a new data set, and so on. However,

only clicking the Continue button will remember the new options and eventually run LISREL to

produce a new analysis. If you change some options on a screen and then use the menu to go

forward to some of the results screens, all you will see are the results of your previous analysis.

• A normal run of EffectLite begins with the Open Data screen. Open a data set and click

on Continue to go to the Select Variables screen.

29
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• Select the variables for the analysis and click on Continue to open the Main Options

screen.

• Fill in the options for the analysis and click the Continue button.

• If the covariate and / or the outcome is latent, EffectLite will open additional screens to

specify the measurement model.

• Finally, EffectLite will open the Main Results screen and display the results of the analysis.

2.3 The Open Data screen

EffectLite can open data files in a variety of formats, such as SPSS, Systat, Statistica, Stata, SAS,

Excel, Matlab, S+, and others. The file type is recognized automatically. For more information,

see section 2.13.

To open a data file, click on the Select file button and navigate to the directory where the

data file is saved. Double-click on the data file, or click on the data file and then on Open. The

name of the file will be displayed to the right of the Select file button.

Select file c:/mydata/myfile.csv

If EffectLite can open the file, it will display it in the window below. This is not a data editor,

just a facility to make sure that the right data file was loaded, and identify possible problems.

Use your favourite statistical program to prepare and edit data files.

EffectLite translates the data file to the comma-separated-values (CSV) format (for more

information, see section 2.14). This new file is saved under the same name and in the same

directory as your original data file, but with the extension .csv. Later on, you can open this

file instead of the original one, or you can delete it if you wish. It is not the data file that will be

passed on to LISREL: after you have selected the variables and other options for the analysis,

EffectLite will produce a separate data file for each non-empty treatment group. These files will

contain only the selected variables, and will be saved in the same directory with the extension

.dat.

Missing data

listwise deletion

FIML

Right under the data window, there is a device to choose how missing data will be treated.

The option listwise deletion will remove all cases for which any of the variables selected on the

Select Variables screen has a missing value. The option FIML will keep all cases (except those

where the treatment variable is missing), code missing values appropriately, and switch on LIS­

REL’s Full Information Maximum Likelihood (FIML) estimation option. Section 1.5 describes

in more detail when and how to use this option to avoid biases due to missing data.
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2.4 The Select Variables screen

On the Select Variables screen, you select the variables for the analysis. Initially, all variables

in the data set appear in the left-hand window. To select the outcome variable(s), click on one

or more variables, and then on the ◮ button to the left of the Outcome variable(s) window.

The selected variables will move to the Outcome variable(s) window. If you selected the wrong

variable, select it in the Outcome variable(s) window, and click on the ◭ button to its left.

Proceed in a similar fashion to select the treatment variable. Note that there can be only

one treatment variable in the analysis. If you select more than one variable, there are two

possibilities:

• If the Group (Treatment) variable window is still empty, the first variable of your selection

will be moved to it.

• If the Group (Treatment) variable window already contains a variable, nothing will hap-

pen.

Optionally select at least one covariate if you want to do an analysis with covariates. The

Covariate(s) window works in the same way as the Outcome variable(s) window.

The Select Variables screen is accessible only if a data file has been opened. If that is not the

case, you will be returned to the Open Data screen.

2.5 The Analysis Options screen

The Select control group window on the left displays the category codes of the independent

variables and their observed frequencies. Click on any row of this display to select the control

(reference) group. The row for the selected group will be highlighted.

Measurement model

all manifest

some latent

The Measurement model window is accessible when more than one variable have been se-

lected for the analysis. Choose the all manifest to treat all selected variables as manifest, or the

some latent option if your model involves at least one latent variable. The measurement model

will be specified on a separate screen.

Sampling model

fully stochastic

group sizes fixed

group sizes and E(Z) fixed

The Sampling model window contains options regarding the sampling model. Group sizes

can be treated either as random variables (the default), or as known constants. When group
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sizes are random variables (as is typical of observational studies), their variances and covari-

ances will be considered when computing Wald tests and the standard errors of average effects

and adjusted means — this is the default setting. In experimental studies, group sizes are typ-

ically fixed by design, and can be treated as known constants; in that case, they will still be

calculated from the data, but their sampling variances and covariances will be assumed to be

zero. In addition, the unconditional expectations of the covariates, E (Z ), can also be treated

as known constants; this option is not available when no covariates have been selected for the

analysis.

The controls on the right hand side may be used to set some equality constraints between

groups: the available options depend on the kind of model being tested. In addition, some

options may be unavailable (dimmed) for particular models.

Models without covariates

Assuming group invariance of:

� Covariate means

� Outcome (co)variances

� Covariate measurement errors

� Outcome measurement errors

Models with covariates

Assuming group invariance of:

� Covariate means

� Covariate (co)variances

� Covariate measurement errors

� Outcome measurement errors

When the model involves covariates and the data come from a randomized experiment, it

may be interesting to set the covariate means, covariate variances and covariances, and – if the

covariate(s) are latent – covariate measurement errors equal among groups.

Finally, there is a possibility to ask for shorter or longer output. In the present version, the

additional output shown by the long option includes:

• in models without covariates: the covariance/correlation matrix of the outcome vari-

ables;

• in models with covariates: the covariance/correlation matrix of the residuals of the out-

comes;

• in models with latent outcomes and/or latent covariates: standard errors of the parame-

ters in the measurement model(s).

The EffectLite output group contains a checkbox labeled Conditional effects. Turn this on to

calculate conditional treatment effects for each row in the data file. The effects and their stan-

dard errors can be examined on the Conditional effects screen, and they can be saved in a CSV

file along with all variables used in the analysis. Conditional effects are not available in mod-

els involving latent variables — in that case, the checkbox will be dimmed and the Conditional

effects screen will not be accessible.

When you have set all analysis options, click the Continue button. EffectLite will generate

the setup language for LISREL, run LISREL, and display the Main Results screen. If you have

forgotten to select the control group, you will be taken back to the Analysis Options screen.
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2.6 The Measurement Model screen

Unlike some earlier versions of EffectLite, there is now a single Measurement Model screen for

all outcome variables and covariates. It is accessible only when the some latent option has been

selected on the Main Options screen.

The Measurement Model screen contains a button to add a latent variable (factor), a button

to delete a factor, and a device to assign manifest variables to factors and constrain some of the

factor loadings.

All manifest variables selected as outcomes (or, respectively, covariates) are displayed in

the first column; the outcome variables come first, followed by the covariates (if any). Latent

variables will be named F1, F2. . . . They can be defined in any arbitrary order, and EffectLite

will recognize them automatically as latent outcomes or latent covariates. Latent variables

attached to both outcomes and covariates (such as method factors) will be treated as latent

covariates (for a definition of method factors, see Pohl et al., 2007).

Loadings are shown in the next columns. Click on any button to change its state. The

possible states for factor loadings are 1, ∗, and 0, meaning fixed to 1, freely estimated, or fixed

to zero.

When a button is blue and displays an asterisk, its contents can be edited. The button

selected for editing will have a grey background and will display a cursor. Remove the asterisk

with the backspace key, and type in either a number (using a decimal dot rather than comma),

or a letter. Typing a number will fix a loading to the corresponding value, and letters are useful

for defining equality constraints among two or more loadings: all loadings sharing the same

letter will be set equal by LISREL.

Before it continues with the analysis, EffectLite will check that:

• each manifest variable is attached to a factor;

• each factor has at least one manifest measure; and

• at least one factor loading for each factor is set to 1.

To mix latent and manifest outcomes/covariates, create a dummy factor for each variable

that must enter the analysis as manifest. The dummy factor has a loading of 1 for the manifest

variable in question, and loadings of 0 for all other manifest variables. The associated error

variable term will automatically be fixed to 0.

The Continue button will run LISREL, compute some additional output, and open up the

Main Results screen.

2.7 The Main Results screen

EffectLite will typically prepare the setup language for a LISREL model, run it, interpret the

output, compute some additional parameters, and display the Main Results screen. If LISREL

estimation has converged without fatal errors, you will see the EffectLite output on a light blue

background. You can scroll up and down, and even type in your own comments. For detailed

information on the output, see section 2.18 and section 2.17.
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Save output

X Include LISREL output

Save

Click the Save button if you wish to save the output to a file. You will be prompted for a

file name. If you check Include LISREL output, the detailed output shown in the window on the

Technical Output screen will be appended to your output file.

If LISREL cannot estimate the model, the main output window will be pink. If LISREL is

not installed or could not be found in the presumed location, the main output window will be

yellow.

A blue window is generally good news, but it does not guarantee that everything was fine

with the model. There may be non-fatal errors or warnings. You may want to switch to the

Technical Output screen to check for any of these.

2.8 The Conditional Effects screen

The Conditional Effects screen displays, in a scrollable table, estimates of the conditional treat-

ment effects and their standard errors for each row of the data file. All variables used in the

model: the group variable, the outcome variable(s), and the covariate(s), are included as well.

Conditional effects are computed just like average treatment effects; the only difference is

that covariate expectations are replaced by fixed covariate values. The columns containing the

conditional effects are labeled Y1_G1, Y1_G2. . . where Y1 means the first outcome variable,

and G1 refers to group 1, the first treatment group (the control group is always group 0). The

labels for standard errors have SE instead of Y. While this system may not be very convenient,

it ensures simple and short variable names that will not lead to trouble with other programs.

The numbers for the outcome variables correspond to their ordering in the table. The numbers

for the treatment groups correspond to the ordering shown under Groups, by order of analysis

near the beginning of the EffectLite output.

Starting with v.3.1.1, the table can be sorted on any column — just place the cursor any-

where in the column and control-click the left mouse button (i.e., press and hold the Control

button and click). Alt-click in any column containing conditional effects to sort the table on

the ratio of the conditional effects to their standard errors; this is quietly ignored if the cursor

is not in a column containing conditional effects.

Click on the Save CSV file button to save the contents of the table into a file. Conditional

effects are only available for models with covariates but without latent variables.

2.9 The Technical Output screen

The chi-squared tests and other statistics reported by EffectLite are computed from the pa-

rameter estimates of an underlying LISREL model. The Technical Output screen displays the

original LISREL output for the model. This contains much additional information that may be

confusing for the novice but helpful in troubleshooting or interesting for those who wish to

understand the technical aspects of the models.

To help you identify possible problems, we have adopted the following convention:
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• LISREL command language that is not supposed to run or could not be run at all is dis-

played on a yellow background;

• The output for a model that ran with a fatal error is displayed on a pink background;

• When LISREL has produced at least chi-squared statistics for a model, the output is dis-

played on a blue background. This is not a guarantee that everything is fine with the

model: watch out for warning messages in the output.

You can save all technical output together with the main results from the analysis – see

section 2.7.

2.10 The Wizard Stuff screen

The models in EffectLite are fairly complicated, and estimation may fail for particular data sets.

Sometimes the problem may be remedied by minor changes to some LISREL settings.

• introducing user-provided start values for some parameters via the ST command;

• changing the convergence criterion for the iterative algorithm via the EP keyword of the

OU command;

• suppressing the computation of internal starting values via the NS keyword of the OU

command, and so on.

The Wizard Stuff screen, which is only accessible over the menu, gives you the possibility

to introduce such small changes, and rerun the models. The layout is similar to the Technical

Output screen; however, the window has a pale green background and shows the LISREL com-

mand language for the model. Edit the input as necessary and click the Save file button to save

the file. When you have made all the necessary changes to the input files, click Run LISREL to

re-estimate the model.

It is very important to avoid any changes to the input files that would modify the model

itself — for instance, introduce new parameters or constrain existing ones. Doing so would

confuse the post-processing of LISREL output by EffectLite and produce misleading results or

unpredictable errors.

2.11 The LISREL Locations screen

This screen displays the location of the executable files for LISREL, or LISREL not available when

EffectLite is configured to work without LISREL. It also allows you to change the configuration

for the location of LISREL. This might be useful, for instance, if you install a new version of

LISREL.

Full instructions on how to search for the LISREL executable are provided in section 2.1.
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2.12 The Help screen

The Help screen displays the help files for EffectLite. Home displays the help contents, Back and

Forward page through the help screens shown last, and About shows some general information

on the program.

You can search the Help contents on any word. Add * to the word to do a complete search

through all help files.

2.13 Types of data files you may use

Thanks to David Baird’s remarkable utility DataLoad, EffectLite can open data files in a vast

variety of formats: Excel 2­5, 95, 97, 2000, XP; Lotus WK1; dBase 2­5; Quattro WQ1, WB*,

QPW; Paradox 3­5; comma, tab, or space delimited text files; GenStat GSH; S+ PC/Unix/Text;

SPSS for Windows; Minitab 8­13, Portable; SAS PC 6.03­12; SAS Transport; Stata 4­7; Systat; Epi­

Info; Statistica 5­6; Gauss; MatLab; and others. We have not tried EffectLite with all of them, but

SPSS files (.sav) and SYSTAT files (.syd; .sys) have worked fine.

The type of the data file is recognized automatically. When you open a data file, it is first

translated to the CSV data format: the resulting CSV file is saved in the same folder as the

original data file, and it will have the same name but the extension .csv. EffectLite actually

works with the CSV file: if you wish to re-use the same data, you can save a couple of seconds

by opening the CSV file instead of your original file.

Very large or complex SPSS files may cause problems. One remedy is to keep the files as

small and simple as possible. Another possibility is to save the data from within SPSS to a

different format such as SAS Transport or SYSTAT.syd, and then open that in EffectLite. How-

ever, we do not recommend creating text files with SPSS – they may contain decimal commas

and other symbols that can confuse LISREL.

2.14 The CSV data format

All data formats (e.g. SPSS data files) are translated to a Comma Separated Values (CSV) file

before they are loaded into EffectLite. CSV files are very simple: you could prepare them with a

simple text editor such as Notepad.

Because the CVS format can differ slightly between programs, here is the specification of

the version exported by DataLoad and expected by EffectLite:

• The first line contains the variable names, separated by commas.

• Each subsequent line has the data for one case, separated by commas.

• The values of all non-numeric variables are enclosed with simple quotes, e.g. ’value’.

They may contain blanks and commas. Quotes are also allowed and must be represented

as two simple quotes: ’’. Long strings are truncated to a length of 12 characters.

• The decimal sign is a period .

• Missing values are represented with * . Values of non-numeric variables consisting en-

tirely of white space or equal to the empty string are also considered missing.
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• Variable names need not be enclosed in quotes. DataLoad will automatically change vari-

able names to a minimal standard, replacing potentially confusing characters.

Here is a very short example of a CSV file; note the embedded quote in Dewar’s, and the

missing value in the last case:

treatment,age,sex,pulse
’control grou’,23,0,66
’Johnnie Walk’,26,1,49
’Dewar’’s’,44,0,55
’Johnnie Walk’,*,1,70

2.15 Models available in the current version

EffectLite can handle two kinds of statistical analysis: with or without covariates. The more

general case of an analysis with covariates (see section 1.2) involves:

• one categorical group variable,

• one or more outcome variable(s),

• one or more covariate(s).

In principle, the outcome variables and the covariate variables may be quantitative, ordi-

nal, or nominal; however, the current version of EffectLite works only with quantitative out-

come variables. A simple trick to use qualitative covariates is to represent them by dichoto-

mous indicator (dummy) variables.

Given a sufficient number of indicators, both outcomes and covariates can be latent, or

even a mixture of latent and manifest variables. In that case, the measurement model is spec-

ified on a special screen (see section 2.6). A new feature in EffectLite is that a latent variable

may be attached both to outcomes and covariates; such latent variables are treated as latent

covariates, and may be used to represent method factors.

Another new feature is the ability to impose equality constraints between two or more fac-

tor loadings. An obvious application is measurement invariance for latent variables that have

been measured repeatedly over time.

The unconditional (w.r.t. treatments) expectations of the covariates, E (Z ), appear in the

formulae for the average treatment effects and the adjusted outcome means. Since E (Z ) do

not appear as explicit parameters of the LISREL model, our current approach is to construct

them as weighted averages of the treatment-specific expectations, with group sizes serving as

weights. The user has the option to consider group sizes either as random, which is a realistic

assumption in an observational study, or as fixed and known constants, which is more appro-

priate for a perfectly controlled experiment. EffectLite will always compute group sizes from

the data, but in the random case it will also estimate their sampling variances and covariances

and consider them in Wald tests and standard error calculations. A similar choice is available

for the expectations E (Z ): they can also be treated as known constants, which makes sense in

research designs with fixed regressors.
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In the present version of EffectLite, all measures of a latent outcome or a latent covariate

must be numeric, and are treated as quantitative variables. Future versions might add options

for ordinal measures. A further constraint is that each manifest variable can have a non-zero

loading on just one latent variable (see the model of congeneric variables in Steyer, 2001).

A mixture of manifest and latent outcomes and/or covariates can be achieved with dummy

factors. A dummy factor is a latent variable measured by just one manifest variable, with a fac-

tor loading of 1 and a measurement error variance of 0. To create a dummy factor, set up the

factor on the appropriate Measurement Model screen, and set the loading to 1; the measure-

ment error will be fixed to zero automatically if a factor has only one manifest variable.

The current version of EffectLite can only handle models with a linear intercept function

and a linear slope (effect) function. However, the user can easily prepare the data in ways that

allow for a wider choice of models. For instance,

• product terms like Z1 · Z2 and powers like Z2 · Z2 may be computed and specified as a

new covariate to allow for models that are linear in the parameters but nonlinear in the

covariates;

• nominal covariates such as sex can be accommodated by pre-computing indicator vari-

ables and specifying them as new covariates. This results in nonorthogonal ANOVA and

MANOVA models with and without covariates.

EffectLite can also handle models without covariates (see section 1.1). These can be used

as alternatives to ANOVA and MANOVA designs. However, they are more general than ordi-

nary ANOVA and MANOVA models, since EffectLite does not presume homogeneity of vari-

ances or covariance matrices between groups. Furthermore, you have the choice between

group comparisons of the means of the manifest outcome variables or group comparison of

the means of one or more common underlying latent variable(s).

2.16 Types of variables

EffectLite works with three kinds of variables:

• a single nominal treatment variable, which can have two or more categories. The cate-

gories may be coded as integers (1, 2), characters (A, B, C), or strings (control, treatment).

• at least one outcome variable, which should be quantitative. Ordinal variables coded

with integers are accepted but treated as quantitative; this may change in future versions.

Non-numeric variables will cause an error in the present version.

• optionally, one or more covariates. All covariates should be numeric, and will be treated

as quantitative. Ordinal variables coded with integers are accepted but treated as quan-

titative; this may change in future versions. Nominal covariates can be represented by

dummy variables; these must be prepared before the data file is opened in EffectLite.

Data files may contain missing values. When the data file is translated to the CSV data for-

mat, all missing values are represented with a * . The user has the choice between listwise

deletion of cases having missing values on any variable selected for the analysis, or full infor-

mation maximum likelihood estimation (FIML).
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2.17 Output: Model without covariates

2.17.1 General information

The output for a model without covariates starts with some general information:

EffectLite v.3.0 for Lisrel: A program for the
analysis of conditional and average effects

(c) Rolf Steyer and Ivailo Partchev, 2007
Internet: www.statlite.com
Email: Rolf.Steyer@uni-jena.de

Ivailo.Partchev@uni-jena.de

Thursday, June 21 2007, 16:18

The file from which the data was read, and the options for missing data treatment and for

the sampling model:

Data from file D:/current/EffectLite/simul.csv
Missing data treatment is listwise deletion
Sampling model is fully stochastic

A list of the levels of the group variable and their counts (frequencies):

Group variable: x
Groups and their frequencies:

Group Frequency
a 348
b 306
c 344

with Group a as control group

The groups are then shown again, reordered as they will be seen and processed by LISREL.

The control group always comes first. This table is useful when trying to understand the details

shown on the Technical output screen.

Groups, by order of analysis:
Group Rel.Freq.

0 a 0.3487
1 b 0.3066
2 c 0.3447

A list of the outcome variables:

OUTCOME(S): y1 y2, treated as manifest

2.17.2 Overall tests of significance

The overall test of significance for the average effect, now computed as a Wald test. This is a

test that, for each outcome variable, the means are equal in all treatment groups. The variances

need not be equal.

* Simultaneous tests for all treatment groups and all dependent variables *

========================================================
Hypothesis Chi-sq DF Prob
--------------------------------------------------------
No treatment effect 64.071 4 0.0000
========================================================
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2.17.3 Detailed analysis of mean differences

The detailed analysis shows, for each outcome variable, the mean difference of each group

with respect to the control group.

*** Detailed analysis of the effects ***

The following results are for the first outcome variable – in this case, y1:

Results for outcome variable 1: y1

The first comparison is between the second group (b) and the control group (a):

Group b - Control group a

Effect is the difference between the two means, Std.error is the standard error of this

difference, and Effect/SE is the ratio of the effect to its standard error.

Effect 0.455
Std.error 0.186
Effect/SE 2.444
Effect size 0.201

Effect size is estimated by dividing the effect by the standard deviation of the outcome vari-

able in the control group.

A similar comparison is made between the third group (c) and the control group:

Group c - Control group a

...

and then follow results for the second outcome variable, y2:

Results for outcome variable 2: y2

...

2.17.4 Group means of the outcome variables

*** Group means of the outcome variable(s) ***

Group Outcome Mean Std.dev. Std.error

a y1 -0.402 2.258 0.121
a y2 -0.367 2.306 0.124

...

There will be some additional output if the EffectLite output option on the Main Options

screen is set to long: for details, see section 2.5.

Note that the interpretation of the results as average causal effects is based on the addi-

tional assumption of unbiasedness of the treatment regression E (Y |X ).
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2.18 Output: Model with covariates

2.18.1 General information

The output for a model with covariates starts with some general information:

EffectLite v.3.1 for Lisrel: A program for the
analysis of conditional and average effects

(c) Rolf Steyer and Ivailo Partchev, 2008
Internet: www.statlite.com
Email: Rolf.Steyer@uni-jena.de

Ivailo.Partchev@uni-jena.de

Thursday, March 6 2008, 16:18

The file from which the data was read, and the options for missing data treatment and for

the sampling model:

Data from file D:/current/EffectLite/simul.csv
Missing data treatment is listwise deletion
Sampling model is fully stochastic

A list of the levels of the group variable and their counts (frequencies):

Group variable: x
Groups and their frequencies:

Group Frequency
a 348
b 306
c 344

with Group a as control group

The groups are then shown again, reordered as they will be seen and processed by LISREL.

The control group always comes first.

Groups, by order of analysis:
Group Rel.Freq.

0 a 0.3487
1 b 0.3066
2 c 0.3447

A list of the outcome variables:

OUTCOME(S): latent, measured by y1 y2

and a list of the covariates:

COVARIATE(S): latent, measured by z1 z2 z3 z4

2.18.2 Measurement model

Similar to the manual to the previous version, we happen to treat the two outcome variables

as manifest, and the four covariate variables as measures of one latent covariate. However,

because we no longer specify the measurement model separately for the outcomes and the co-

variates, we have to use the ‘dummy factor trick’ to accommodate the manifest variables. Each

dummy factor has only one indicator (manifest variable) loading on it, the loading is 1, and

the error variance is zero, as it is easily seen from the output information on the measurement

model:
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*** Measurement model ***

y1 = 0 +1.000 * F1

y2 = 0 +1.000 * F2

z1 = 0 +1.000 * F3 + Error(z1)

z2 = 0.017 +0.966 * F3 + Error(z2)

z3 = -0.004 +1.002 * F3 + Error(z3)

z4 = -0.008 +1.021 * F3 + Error(z4)

Error variances

Group y1 y2 z1 z2 z3 z4
a --- --- 0.240 0.232 0.229 0.259
b --- --- 0.205 0.245 0.287 0.248
c --- --- 0.239 0.254 0.257 0.267

Covariances between latent variables are shown below the main diagonal, and correlations

above the main diagonal:

Covariance / correlation matrix of the latent variables

Group a
F1 F2 F3

F1 5.101 0.952 0.301
F2 4.959 5.319 0.319
F3 0.655 0.708 0.928

... (similar output for groups b and c)

2.18.3 Group means of the covariates

EffectLite reports the group means of the covariates, their standard errors, and the standard

deviations:

*** Group means of the covariate(s) ***

Covariate Group Mean Std.error Std.dev.

F3 a -0.502 0.055 0.963
F3 b 0.039 0.057 0.938
F3 c 0.492 0.057 0.983

There is also a simultaneous test that covariate means do not differ across treatment groups:

Simultaneous test that covariate means are equal between treatment groups:
Chi-sq DF Prob

164.617 2 0.0000

If the covariate means are equal across all groups, we have a situation similar to a perfectly

randomized experiment, and the average treatment effects (after adjusting for the covariates)

will remain close to the unconditional mean differences. This is certainly not the case in the ex-

ample above: the group means are markedly different and the overall test is highly significant,

so it makes sense to proceed further.
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2.18.4 Group means of the outcome variable(s)

The next section of the output concentrates on the means of the outcome variable(s). EffectLite

shows the raw mean, the adjusted mean, and the standard deviation of each outcome variable

and each group, along with the standard errors for the two kinds of means:

*** Group means of the outcome variable(s) ***

Group Outcome Raw mean SE(Raw mean) Std.dev. Adj.mean SE(Adj.mean)

a F1 -0.402 0.121 2.258 -0.043 0.134
a F2 -0.367 0.124 2.306 0.022 0.136

... (similar output for groups b and c)

Much attention is given to comparing each raw mean to its corresponding adjusted mean:

Differences between raw and adjusted means

Group Outcome Difference SE(Difference) Difference/SE

a F1 0.359 0.071 5.075
a F2 0.388 0.073 5.332

... (similar output for groups b and c)

Simultaneous test that all raw means are equal to the corresponding
adjusted means:

Chi-sq DF Prob
103.235 6 0.0000

When the overall test that all adjusted means are equal to the corresponding raw means

rejects the null hypothesis, this is further indication that it makes sense to consider an analysis

involving covariates. On the contrary, a non-significant test implies that an analysis without

covariates could have been sufficient. Even in that case, including covariates may be valuable

in increasing the power of significance tests or in the study of possible interactions between

covariates an the treatment variable. A non-significant test does not necessarily mean that the

covariate-adjusted average effects shown below are causally unbiased: that kind of test is not

yet available in the current version of EffectLite.

2.18.5 Overall tests of significance

The overall tests of significance are arranged somewhat similar to an ANOVA table. Each test is

now computed as a Wald test:

* Simultaneous tests for all treatment groups and all dependent variables *

===============================================================================
Hypothesis Chi-sq DF Prob
-------------------------------------------------------------------------------
No average treatment effect: E(g1) = ... = E(g2) = 0 3.076 4 0.5453
No covariate effect in control group: g0 = constant 36.365 2 0.0000
No treatment*covariate interaction: g1,...,g2 = constant 55.370 4 0.0000
No treatment effects: g1,...,g2 = 0 64.748 8 0.0000
===============================================================================

The null hypotheses are discussed in detail in sections 1.2.7 (no average treatment effect),

1.2.8 (no covariate effect), 1.2.9 (no treatment× covariate interaction), and 1.2.10 (no treatment

effects).
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2.18.6 Average treatment effects

The next section of the output shows results for the average effects of the treatment. Averaging

is over the distribution of the covariates.

*** Detailed analysis of the average effects ***

Results are shown for each outcome variable. . .

Results for outcome variable 1: y1

. . . and for each group compared to the control (or reference) group:

Group b - Control group a

Effect E(g1) 0.045
Std.error 0.178
Effect/Std.error 0.252
Effect size 0.020

Group c - Control group a

...

Results for outcome variable 2: y2

...

Effect size is computed by dividing the average effect estimate by the standard deviation of

the outcome variable in the control group.

2.18.7 Deviations of the adjusted means from their averages over groups

A new feature in Version 3 are the deviations of the adjusted means of each outcome variable

from their (unweighted) average over all groups. These may be more appropriate than the

average treatment effects of section 2.18.6 in situations where there is no prescribed control

group against which to measure effects.

Deviations of adjusted means from their average over groups

Outcome Group Deviation SE(Deviation) Deviation/SE

F1 a -0.094 0.108 -0.874
F1 b -0.049 0.099 -0.500
F1 c 0.144 0.106 1.355

... (similar output for outcome variable F2)

2.18.8 Average effects given a treatment condition

The next section of the output shows the average effects given a treatment condition. These ef-

fects are perhaps easiest to understand when there are only two groups, treatment and control.

In that case, the average effect given the control group is the average effect for the non-treated,

while the average effect given the treatment group is the average effect for the treated. For more

details, see section 1.2.6.

Because the number of these effects increases rapidly with the number of groups, we have

set an upper limit (currently 40) for the total number of effects that can be shown. Hence, aver-

age effects given a treatment condition will not be shown if the number of outcome variables

exceeds the following limits:
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Number of Maximum number of

treatment groups outcome variables

2 20

3 5

4 3

5 2

6 1

More than 6 No effects shown

*** Average effects given a treatment condition ***

Results for outcome variable 1: y1

Group b - Control group a

Effect given treatment: 0 1 2
Effect E(g1|X=i) -0.381 0.072 0.451
Std.error 0.184 0.182 0.218
Effect/Std.error -2.076 0.398 2.072
Effect size -0.169 0.032 0.200

Group c - Control group a
...

2.18.9 Effect functions

The next section of the output shows results useful for the analysis of the effect functions:

*** Detailed analysis of the conditional effects ***

Again, results are presented for each outcome variable in turn:

Results for outcome variable 1: y1

The intercept function is the regression of the outcome variable on the covariate(s) in the

control group. This is the g0 function discussed above and in Steyer et al. (2007). The output

displays the point estimate for each regression coefficient, its standard error, and the ratio of

the estimate to its standard error:

Intercept F3
Coefficient -0.048 0.706
Std.error 0.132 0.125
Coeff./SE -0.361 5.664

For each group other than the control group, there is an effect function — these are the g1

function, g2 function, etc., discussed above and in Steyer et al. (2007):

Effect function g_1: Group b - Control group a

Intercept F3
Coefficient 0.039 0.838
Std.error 0.176 0.179
Coeff./SE 0.223 4.672

Effect function g_2: Group c - Control group a

...

Results for outcome variable 2: y2

...
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There will be some additional output if the EffectLite output option on the Main Options

screen is set to long: for details, see section 2.5.

Note that the interpretation of the results as average causal effects and conditional causal

effects is based on certain assumptions (see Steyer et al., 2007 for details). The present version

of EffectLite does not test whether this is the case. For background information on causality

tests, see e.g. Steyer, Gabler, Davier, and Nachtigall (2000).
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